I3 TEXAS
INSTRUMENTS

TI-72Spire

TI-Nspire™ / TI-Nspire™ CX
Reference Guide

This guidebook applies to TI-Nspire™ software version 3.6. To obtain the latest version of the
documentation, go to education.ti.com/guides.

http://www.education.ti.com/guides

Important Information

Except as otherwise expressly stated in the License that accompanies a program, Texas
Instruments makes no warranty, either express or implied, including but not limited to any
implied warranties of merchantability and fithess for a particular purpose, regarding any
programs or book materials and makes such materials available solely on an "as-is" basis. In
no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or
consequential damages in connection with or arising out of the purchase or use of these
materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of
action, shall not exceed the amount set forth in the license for the program. Moreover, Texas
Instruments shall not be liable for any claim of any kind whatsoever against the use of these
materials by any other party.

License
Please see the complete license installed in
C:\Program Files\T| Education\<TI-Nspire™ Product Name>\license.

© 2006 - 2013 Texas Instruments Incorporated

Contents

Important Information 2
Expression Templates 5
Alphabetical Listing 11

A L 11

B . 19

C o 22

D 37

B oo 43

F oo . 49

G 56

b 61

L o 67

M . 80

R 88

O 95

P 98

Q o 104

R e 106

S 119

L 136

L 146

VL 147

W . 148

X L 149

A 150
Symbols ... il 156
Empty (Void) Elements 177
Shortcuts for Entering Math Expressions 179
EOS™ (Equation Operating System) Hierarchy_..._. 181
Error Codesand Messages 183

Warning Codes and Messages

___ 191
Support and Service ...l 193
Texas Instruments Supportand Service 193
Service and Warranty Information 193

Expression Templates

Expression templates give you an easy way to enter math expressions in standard
mathematical notation. When you insert a template, it appears on the entry line with small
blocks at positions where you can enter elements. A cursor shows which element you can
enter.

Use the arrow keys or press to move the cursor to each element’s position, and type a
value or expression for the element. Press or et [enter] to evaluate the expression.

Fraction template (][] keys
:r-i Example:
H Wi 12 3
i_! Note: See also/ (divide), page 158. -
82 4
Exponent template key
™ i“i Example:
[
; 53 8
Note: Type the first value, press [~], and then type
the exponent. To return the cursor to the baseline,
press right arrow (p).
Note: See also * (power), page 158.
Square root template [etn) 2] keys
™ Example:
\ -1 Note: See also V() (square root), page 167. J,_
4 2

{9,a,4} {3,V(a),2}

i .
[{9,16,4} {342}

Expression Templates 5

Nth root template (e)(~] keys

Example:
' M 3
i Note: See also root(), page 116. JE 2
Ms2m15) {2,3,2.46621}
e exponent template keys
I__I Example:
i
E -_—
el 271828182846
Natural exponential e raised to a power
Note: See also e*(), page 43.
Log template [etri]] key
log - (l:l jl Example:
- log (2) 0.5
Calculates log to a specified base. For a default of 4
base 10, omit the base.
Note: See also log(), page 76.
Piecewise template (2-piece) Catalog >
™o Example:
]
o 6
[
Lets you create expressions and conditions for a
two-piece piecewise function. To add a piece, click in
the template and repeat the template. 1
Note: See also piecewise(), page 99. -2 1 6 F
-2
CJxt+l, x>1
fZ(,\) {undef,xil

Piecewise template (N-piece) Catalog >

Lets you create expressions and conditions for an N-piece Example:

6 Expression Templates

Piecewise template (N-piece)
piecewise function. Prompts for N.

Create Piecewise Function El

Piecewise Function

Note: See also piecewise(), page 99.

System of 2 equations template

u R
L |

Creates a system of two linear equations. To add a
row to an existing system, click in the template and
repeat the template.

Note: See also system(), page 135.

System of N equations template

Lets you create a system of Nlinear equations. Prompts for N.

Create a System of Eq... [¥]

System of Equations

Mumber of equations

Note: See also system(), page 135.

Absolute value template
(o}
i

Note: See also abs(), page 11.

Catalog >

See the example for Piecewise template
(2-piece).

Catalog > [
Example:
solve { yi:,xky) x=— and y—_—
solve[=X "2 xy
a2 y=-1
-3 1
x=— and y=— or x=1 and y=-1
2 4
Catalog >
Example:

See the example for System of
equations template (2-equation).

Catalog >

Example:

Hz,—3,4,—43H

{23,464}

Expression Templates 7

dd°mm’ss.ss” template

Mol i Example:

Catalog >

Lets you enter angles in dd°mm’ss.ss” format, where 30°15'10"

0.528011

dd is the number of decimal degrees, mm is the
number of minutes, and ss.ss is the number of
seconds.

Matrix template (2 x 2)

1
-

Example:

U
Jld

Catalog> o

1
-

5

Creates a 2 x 2 matrix.

Matrix template (1x 2)

[}
P
P
L

!

‘i] Example:

Catalog> ["E

crossP([l 2],[3 4])

[0 0 2]

Matrix template (2 x 1)

.

Example:

Catalog > [*F

T
L S|

e

0.05
0.08

Matrix template (m x n)

The template appears after you are prompted to Example:

Catalog >

specify the number of rows and columns.

Create a Matrix ® diag|

Ul = e
~N DN
O W

[4 2 9]

Matrix

Mumber of rows | 3 5

Mumber of columns | 3 3

8 Expression Templates

Matrix template (m x n) Catalog >

Note: If you create a matrix with a large number of
rows and columns, it may take a few moments to

appear.
Sum template (%) Catalog>
i Example:
(rﬂl jl 7 25
A E (n)
e n=3
Note: See also X() (sumSeq), page 168.
Product template (IT) Catalog >
i Example:
(™) 5 1
1 120
[i=1] ‘ n
n=1
Note: See also I1() (prodSeq), page 167.
First derivative template Catalog >
d o) Example:
d:...: i”YDlY—O undef
The first derivative template can be used to calculate dx
first derivative at a point numerically, using auto
differentiation methods.
Note: See also d() (derivative), page 166.
Second derivative template Catalog >
d2 Example:
~——{]
dli

Expression Templates 9

Second derivative template

The second derivative template can be used to
calculate second derivative at a point numerically,
using auto differentiation methods.

Note: See also d() (derivative), page 166.

Definite integral template

.

The definite integral template can be used to calculate

the definite integral numerically, using the same
method as nint().

Note: See also nint(), page 91.

Catalog >

£ (s :

Catalog >

Example:

10 333.333
Jc2 dx

10 Expression Templates

Alphabetical Listing

Iltems whose names are not alphabetic (such as +, |, and >) are listed at the end of this

section, page 156. Unless otherwise specified, allexamples in this section were performed in

the default reset mode, and all variables are assumed to be undefined.

A

abs()

abs(Valuel) = value
abs(Listl) = list
abs(Matrix 1) = matrix

Returns the absolute value of the argument.
Note: See also Absolute value template, page 7.

If the argument is a complex number, returns the
number’s modulus.

amortTbl()

amontThi(NPmt,N,I,PV, [Pmi, [FV], [PpY], [CpY],
[PmtAq), [roundValue]) = matrix

Amortization function that returns a matrix as an
amortization table for a set of TVM arguments.

NPmt is the number of payments to be included in the
table. The table starts with the first payment.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are

described in the table of TVM arguments, page 144.

. If you omit Pmt, it defaults to Pmt=tvmPmt
(N,1,PV,FV,PpY,CpY,PmtAt).

. If you omit FV, it defaults to F/=0.

. The defaults for PpY, CpY, and PmtAt are the
same as for the TVM functions.

roundValue specifies the number of decimal places
for rounding. Default=2.

The columns in the result matrix are in this order:
Payment number, amount paid to interest, amount

Catalog > [

{1.5708,1.0472}

3]

|2-3-1| 3.60355
Catalog>

amortTh1(12,60,10,5000,,,12,12)
0 o 0. 5000.

1 41.67 6457 4935.43
2 41.13 -65.11 4870.32
3 -40.59 -65.65 4804.67
4 -40.04 -66.2 4738.47
5 -39.49 -66.75 4671.72
6 3893 -67.31 4604.41
7 -38.37 -67.87 4536.54
8 -37.8 -68.44 4468.1

9 -37.23 -69.01 4399.09
10 -36.66 -69.58 4329.51
11 -36.08 -70.16 4259.35
12 -35.49 -70.75 4188.6 |

Alphabetical Listing 11

amortTbl()
paid to principal, and balance.

The balance displayed in row 7 is the balance after
payment 7.

You can use the output matrix as input for the other
amortization functions ZInt() and ZPrn(), page 168,
and bal(), page 19.

and

BooleanExpr1 and BooleanExpr2 = Boolean
expression

BooleanList1 and BooleanList2 = Boolean list

BooleanMatrix 1 and BooleanMatrix2 => Boolean
matrix

Returns true or false or a simplified form of the original

entry.
Integerl andinteger2 = integer

Compares two real integers bit-by-bit using an and
operation. Internally, both integers are converted to
signed, 64-bit binary numbers. When corresponding
bits are compared, the result is 1 if both bits are 1;
otherwise, the result is 0. The returned value
represents the bit results, and is displayed according
to the Base mode.

You can enter the integers in any number base. Fora
binary or hexadecimal entry, you must use the Ob or

Oh prefix, respectively. Without a prefix, integers are
treated as decimal (base 10).

angle()
angle(Valuel) = value

Returns the angle of the argument, interpreting the
argument as a complex number.

Catalog >

Catalog > [
In Hex base mode:
0h7AC36 and Oh3D5F 0h2C16
Important: Zero, not the letter O.
In Bin base mode:
0b100101 and 0b100 0b100
In Dec base mode:
37 and 0b100 4

Note: A binary entry can have up to 64 digits (not
counting the Ob prefix). A hexadecimal entry can have
up to 16 digits.

Catalog >
In Degree angle mode:
angle(0+2-i))

12 Alphabetical Listing

angle() Catalog >

In Gradian angle mode:

angle(0+3-i) 100

In Radian angle mode:

angle(1+4) 0.785398
angle({1+2-1,3+0-i,0-4-i})
{1.10715,0.,-1.5708}

angle(List1) = list angle({ 1+2-1,3+0-1,0-4-i})

angle(Matrix 1) = matrix n 1Yo
——tan™|—|,0,—

Returns a list or matrix of angles of the elements in

List] or Matrix 1, interpreting each element as a
complex number that represents a two-dimensional
rectangular coordinate point.

ANOVA Catalog >

ANOVA Listl,List2[,List3,...,List20][,Flag]

Performs a one-way analysis of variance for comparing the
means of two to 20 populations. A summary of results is stored
in the stat. results variable. (page 131)

Flag=0for Data, Flag=1for Stats

Output variable Description

stat.F Value of the F statistic

stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom of the groups

stat.SS Sum of squares of the groups

statMS Mean squares for the groups

stat.dfError Degrees of freedom of the errors

stat.SSError Sum of squares of the errors

stat.MSError Mean square for the errors

stat.sp Pooled standard deviation

Alphabetical Listing

13

Output variable Description

stat.xbarlist Mean of the input of the lists

stat.CLowerlList 95% confidence intervals for the mean of each input list
stat.CUpperList 95% confidence intervals for the mean of each input list
ANOVA2way

ANOVA2way List1,List2[,List3,..,List10][,levRow]

Computes a two-way analysis of variance for comparing the
means of two to 10 populations. A summary of results is stored
in the stat. results variable. (See page 131.)

LevRow=0 for Block
LevRow=2,3,...,Len-1, for Two Factor, where Len=length(ListI)
=length(List2) =..=length(List10) and Len/ LevRow 1 {2,3,..}

Outputs: Block Design

Output variable Description

statF F statistic of the column factor

stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom of the column factor

stat.SS Sum of squares of the column factor

statMS Mean squares for column factor

stat.FBlock F statistic for factor

stat.PValBlock Least probability at which the null hypothesis can be rejected
stat.dfBlock Degrees of freedom for factor

stat.SSBlock Sum of squares for factor

stat. MSBlock Mean squares for factor

stat.dfError Degrees of freedom of the errors

stat.SSError Sum of squares of the errors

stat. MSError Mean squares for the errors

stat.s Standard deviation of the error

COLUMN FACTOR Outputs

14 Alphabetical Listing

Output variable

Description

stat.Fcol F statistic of the column factor
stat.PValCol Probability value of the column factor
stat.dfCol Degrees of freedom of the column factor
stat.SSCol Sum of squares of the column factor
stat. MSCol Mean squares for column factor
ROW FACTOR Outputs

Output variable Description

stat.FRow F statistic of the row factor

stat.PValRow

Probability value of the row factor

stat.dfRow Degrees of freedom of the row factor
stat.SSRow Sum of squares of the row factor
stat. MSRow Mean squares for row factor

INTERACTION Outputs

Output variable

Description

stat.FInteract

F statistic of the interaction

stat.PVallnteract

Probability value of the interaction

stat.dflnteract

Degrees of freedom of the interaction

stat.SSInteract

Sum of squares of the interaction

stat.MSinteract

Mean squares for interaction

ERROR Outputs
Output variable Description
stat.dfError Degrees of freedom of the errors
stat.SSError Sum of squares of the errors
stat. MSError Mean squares for the errors
s Standard deviation of the error

Alphabetical Listing

15

Ans
Ans = value

Returns the result of the most recently evaluated
expression.

approx()
approx(Valuel) = number

Returns the evaluation of the argument as an
expression containing decimal values, when possible,
regardless of the current Auto or Approximate mode.

This is equivalent to entering the argument and

pressing [etr] enter].

approx(Listl) = list
approx(Matrix 1) = matrix

Returns a list or matrix where each element has been
evaluated to a decimal value, when possible.

» approxFraction()

Valuew approxFraction([70/]) = value
List»approxFraction([Tol]) = list
MatrixwapproxFraction([70/]) = matrix

Returns the input as a fraction, using a tolerance of
Tol. If Tol is omitted, a tolerance of 5.E-14 is used.

Note: You can insert this function from the computer
keyboard by typing @>approxFraction(...).

(][] keys

56 56
56+4 60
60+4 64

Catalog >

0.333333
approx|

l” {0.333333,0.111111}
9

{o.1}

1
3
approx|{ sin(x) COS(‘JE)})

[1.41421 1.73205]

approx[2 (]

[0.333333 0.111111]

4
—E

E
=

{o,1.}

approx sm(n) COS(ﬂ) })

[1.41421 1.73205]

approx J 2

Catalog >

1.1 0.833333
—t— +tan(7t)
2 3

0.83333333333333p approxFraction(5.e-14)

El
6

{ 1.5 } 4 approxFraclion(S. E’14)
5419351 3
17250332

16 Alphabetical Listing

approxRational()
approxRational(Value[, Tol]) = value
approxRational(List[, Tol]) = list
approxRational(Matrix[, Tol]) = matrix

Returns the argument as a fraction using a tolerance

of Tol. If Tol is omitted, a tolerance of 5.E-14 is used.

arccos()

arccosh()

arccot()

arccoth()

arcesc()

arccsch()

arcsec()

arcsech()

Catalog >

approxRational[(O. 333,5:10 >) 333
1000

approxRational({0.2,0.33,4.125},5.6-14)

133 33
57100° 8

See cos (), page 29.

See cosh(), page 30.

See cot (), page 31.

See coth (), page 32.

See csc(), page 34.

See csch(), page 35.

See sec (), page 119.

See sech (), page 120.

Alphabetical Listing 17

arcsin()

arcsinh()

arctan()

arctanh()

augment()
augment(List1, List2) = list

Returns a new list that is List2 appended to the end of
Listl.

augment(Matrix 1, Matrix2) = matrix

Returns a new matrix that is Matrix2 appended to
Matrix1. When the “,” character is used, the matrices
must have equal row dimensions, and Matrix2 is
appended to Matrix 1 as new columns. Does not alter
Matrix 1 or Matrix2.

avgRC()

avgRC(Exprl, Var [=Value] [, Step]) = expression
avgRC(Exprl, Var [=Value] [, List1]) = list
avgRC(List1, Var [=Value] [, Step]) = list
avgRC(Matrix1, Var [=Value] [, Step]) = matrix

Returns the forward-difference quotient (average rate
of change).

Exprl can be a user-defined function name (see
Func).

See sin™(), page 126.

See sinh(), page 127.

Seetan’(), page 137.

See tanh (), page 138.

Catalog>

augment({1,3,2},{5,4}) {13254}
1 2|5m1 12
3 4 3 4
o :
6 6
augmenl(ml,mZ) [1 25
346

Catalog >

=2 2
angc(xz—x+z,x) 3.001
anRC(x27x+2,x,.1) 31
anRC(x27x+2,x,3) 6

18 Alphabetical Listing

avgRC()

When Value is specified, it overrides any prior
variable assignment or any current “|” substitution for
the variable.

Step is the step value. If Step is omitted, it defaults to
0.001.

Note that the similar function centralDiff() uses the
central-difference quotient.

B

bal()

bal(NPmt,N,LPV ,[Pmt], [FV], [PpY], [CpY], [PmtAt],
[roundValuel) = value

bal(NPmt,amortTable) = value

Amortization function that calculates schedule
balance after a specified payment.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are
described in the table of TVM arguments, page 144.

NPmt specifies the payment number after which you
want the data calculated.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are
described in the table of TVM arguments, page 144.

. If you omit Pmt, it defaults to Pmt=tvmPmt
(N,1,PV,FV,PpY,CpY,PmtAt).
. If you omit FV, it defaults to F7’=0.

. The defaults for PpY, CpY, and PmtAt are the
same as for the TVM functions.

roundValue specifies the number of decimal places
for rounding. Default=2.

bal(NPmt,amortTable) calculates the balance after
payment number NPmt, based on amortization table
amortTable. The amortTable argument must be a
matrix in the form described under amortTbl(), page
11.

Note: See also ZInt() and Pm(), page 168.

Catalog >

Catalog >

bal(5,6,5.75,5000,,12,12)

833.11

tbl:=amortTbl(6,6,5.75,5000,,12,12)

0

N Ul = W N =

0. 0.
-23.35 -825.63
-19.49 -829.49
-15.62 -833.36
-11.73 -837.25

-7.82 -841.16
-3.89 -845.09

5000.
4174.37
3344.88
2511.52
1674.27

833.11

-11.98

bal(4,b1)

1674.27

Alphabetical Listing 19

»Base2 Catalog >
Integer] »-Base2 = integer 256> Base2 0b100000000
Note: You can insert this operator from the computer Oh1F» Base2 0b11111

keyboard by typing @>Base2.

Converts Integer! to a binary number. Binary or
hexadecimal numbers always have a Ob or Oh prefix,
respectively. Use a zero, not the letter O, followed by
borh.

0b binary Number
Oh hexadecimalNumber

Abinary number can have up to 64 digits. A
hexadecimal number can have up to 16.

Without a prefix, Integerl is treated as decimal
(base 10). The result is displayed in binary, regardless
of the Base mode.

Negative numbers are displayed in “two's
complement” form. For example,

“1is displayed as
OhFFFFFFFFFFFFFFFF in Hex base mode
Ob111...111 (64 1’s) in Binary base mode

263 s displayed as
0h8000000000000000 in Hex base mode
0b100...000 (63 zeros) in Binary base mode

If you enter a decimal integer that is outside the range
of a signed, 64-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range. Consider the following examples of
values outside the range.

263 hecomes 283 and is displayed as
0h8000000000000000 in Hex base mode
0b100...000 (63 zeros) in Binary base mode

264 hecomes 0 and is displayed as
0hO in Hex base mode
0b0 in Binary base mode

263 — 1 becomes 263 - 1 and is displayed as
Oh7FFFFFFFFFFFFFFF in Hex base mode
0b111...111 (64 1’s) in Binary base mode

20 Alphabetical Listing

»Base10 Catak)g >

Integer] »Base10 = integer 0b10011» Base10 19

Note: You can insert this operator from the computer Oh1F» Basel0 31
keyboard by typing @>Basel0.

Converts Integerl to a decimal (base 10) number. A
binary or hexadecimal entry must always have a Ob or
Oh prefix, respectively.

0b binary Number
Oh hexadecimalNumber

Zero, not the letter O, followed by b or h.

Abinary number can have up to 64 digits. A
hexadecimal number can have up to 16.

Without a prefix, Integerl is treated as decimal. The
result is displayed in decimal, regardless of the Base

mode.

»Base16 Catalog >
Integerl »Base16 = integer 256> Basel6 0h100
Note: You can insert this operator from the computer 0b111100001111»Basel6 OhFOF

keyboard by typing @>Basel6.

Converts Integer] to a hexadecimal number. Binary
or hexadecimal numbers always have a Ob or Oh
prefix, respectively.

0b binary Number
Oh hexadecimalNumber

Zero, not the letter O, followed by b or h.

A binary number can have up to 64 digits. A
hexadecimal number can have up to 16.

Without a prefix, Integerl is treated as decimal
(base 10). The result is displayed in hexadecimal,
regardless of the Base mode.

If you enter a decimal integer that is too large for a
signed, 64-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range. For more information, see
»Base2, page 20.

Alphabetical Listing 21

binomCdf()

binomCdf(n,p) = number

binomCdf(n,p,lowBound,upBound) = number if lowBound and
upBound are numbers, [ist if lowBound and upBound are lists

binomCdf(n,p,upBound)for P(0<X<upBound) = number if

upBound is a number, list if upBoundis a list

Computes a cumulative probability for the discrete binomial
distribution with » number of trials and probability p of success on

each trial.

For P(X <upBound), set lowBound=0

binomPdf()

binomPdf(1,p) = number

binomPdf(n,p,XVal) = number if XVal is a number, list if XVal is

alist

Computes a probability for the discrete binomial distribution with
n number of trials and probability p of success on each trial.

C

ceiling()

ceiling(Valuel) = value

Returns the nearest integer that is > the argument.
The argument can be a real or a complex humber.
Note: See also floor().

ceiling(List1) = list
ceiling(Matrix 1) = matrix

Returns a list or matrix of the ceiling of each element.

centralDiff()
centralDiff(Expr1, Var [=Value][,Step]) = expression

centralDiff(Expr1, Var [,Step])| Var=Value =
expression

Catalog >

Catalog >
Catalog >
ceiling(.456) L
ceiling({3.1,1,2.5}} EWEY!
ceilingﬂ 0 ﬁ.z-tD lo 3 ,J
1.3 4 2 4
Catalog >
-1.

centr‘alDiff(cos(x),x)\x=§

22 Alphabetical Listing

centralDiff() Catalog >
centralDiff(Exprl, Var [=Value][,List]) = list

centralDiff(List1,Var [=Value][,Step]) = list

centralDiff(Matrix1,Var [=Value][,Step]) = matrix

Returns the numerical derivative using the central
difference quotient formula.

When Value is specified, it overrides any prior
variable assignment or any current “|” substitution for
the variable.

Step is the step value. If Step is omitted, it defaults to
0.001.

When using ListI or Matrix I, the operation gets
mapped across the values in the list or across the
matrix elements.

Note: See also avgRC().

char() Catalog >
char(lnteger) = character char(38) g
Returns a character string containing the character char{65) "A"

numbered Integer from the handheld character set.
The valid range for Integer is 0-65535.

#2way Catalog >
x22way obsMatrix
chi22way obsMatrix

Computes a 2 test for association on the two-way table of
counts in the observed matrix obsMatrix. Asummary of results
is stored in the stat.results variable. (page 131)

For information on the effect of empty elements in a matrix, see
“Empty (Void) Elements,” page 177.

Output variable Description

staty2 Chi square stat: sum (observed - expected)?/expected

Alphabetical Listing 23

Output variable

Description

stat.PVal

Smallest level of significance at which the null hypothesis can be rejected

stat.df

Degrees of freedom for the chi square statistics

stat.ExpMat

Matrix of expected elemental count table, assuming null hypothesis

stat.CompMat

Matrix of elemental chi square statistic contributions

x2Cdf()

x2Cdf(lowBound,upBound,df) = number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

chi2Cdf(lowBound,upBound,df) = number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

Computes the 2 distribution probability between lowBound and
upBound for the specified degrees of freedom df.

For P(X<upBound), set lowBound =0.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

+2GOF

x2GOF obsList,expList,df

chi2GOF obsList,expList,df

Performs a test to confirm that sample data is from a population
that conforms to a specified distribution. obsList is a list of
counts and must contain integers. A summary of results is
stored in the stat.results variable. (See page 131.)

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Catalog >

Catalog >

Output variable Description

staty2 Chi square stat: sum((observed - expected)?/expected

stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom for the chi square statistics

stat.ComplList Elemental chi square statistic contributions

24 Alphabetical Listing

1Pdf() Catalog >
szdf(XVal,df) = number if XVal is a number, list if XVal is a list

chi2Pdf(XVal,df) = number if XVal is a number, list if XVal is a
list
Computes the probability density function (pdf) for the x2

distribution at a specified XVal/ value for the specified degrees of
freedom df.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

ClearAZ Catalog >
ClearAZ 5-b 5
Clears all single-character variables in the current b 5
problem space. ClearAZ Done
If one or more of the variables are locked, this b "Error: Variable is not defined"

command displays an error message and deletes only
the unlocked variables. See unLock, page 147.

ClIrErr Catalog > Eﬂ

CIrErr For an example of CIrErr, See Example

2 under the Try command, page 141.
Clears the error status and sets system variable errCode to

zero.

The Else clause of the Try...Else...EndTry block should use
CIrErr or PassErr. If the error is to be processed or ignored, use
CIrErr. If what to do with the error is not known, use PassErr to
send it to the next error handler. If there are no more pending
Try...Else...EndTry error handlers, the error dialog box will be
displayed as normal.

Note: See also PassErr, page 98, and Try, page 141.

Note for entering the example: In the Calculator application on
the handheld, you can enter multi-line definitions by pressing
instead of at the end of each line. On the computer
keyboard, hold down Alt and press Enter.

Alphabetical Listing 25

colAugment()
colAugment(Matrix 1, Matrix2) = matrix

Returns a new matrix that is Matrix2 appended to
Matrix 1. The matrices must have equal column
dimensions, and Matrix2 is appended to Matrix1 as
new rows. Does not alter Matrix 1 or Matrix2.

colDim()
colDim(Matrix) = expression
Returns the number of columns contained in Matrix.

Note: See also rowDim().

colNorm()
colNorm(Matrix) = expression

Returns the maximum of the sums of the absolute
values of the elements in the columns in Matrix.

Note: Undefined matrix elements are not allowed. See

also rowNorm().

conj()

conj(Valuel) = value
conj(List1) = list
conj(Matrix 1) = matrix

Returns the complex conjugate of the argument.

constructMat()

constructMat(Expr, Varl,Var2,numRows,numCols)
= matrix

Returns a matrix based on the arguments.

Expris an expression in variables Varl and Var2.
Elements in the resulting matrix are formed by

Catalog >

1 2|5mi 12
3 4 3 4
[5 6]-m2 [5 6]
colAugment(mI,mZ) 12
3 4

5 6

Catalog>

colDimﬂO 1 2) 3

345

Catalog>

1 2 3|5 mat 123
4 5 6 4 5 6
colNorm(mat) 9
Catalog>

conj(1+2:) 1-2-i
conj(z 1734‘) 2 143

i 7 i 7

Catalog>

constructMat(

1ty

L,

N O T SR

U= = W=
o= U= e =
S O N

26 Alphabetical Listing

constructMat()

evaluating Expr for each incremented value of Var!
and Var2.

Varl is automatically incremented from 1 through
numRows. Within each row, Var2 is incremented from
1 through numCols.

Catalog >

CopyVar Catalog >
CopyVar Varl, Var2
Define a(x):l Done
CopyVar Varl., Var2. X
_.2 D
CopyVar Varl, Var2 copies the value of variable Varl Define b(x)—x one
to variable Var?2, creating Var?2 if necessary. Variable CopyVar a,c: c(4) 1
Varl must have a value. 4
If Varl is the name of an existing user-defined CopyVar b,c: 5(4) 16
function, copies the definition of that function to
function Var2. Function Varl must be defined.
Varl must meet the variable-naming requirements or
must be an indirection expression that simplifies to a
variable name meeting the requirements.
CopyVar Varl., Var2. copies allmembers of the aa.a:=45 45
Varl1. variable group to the Var2. group, creating aa.b—6.78 6.78
Var2. if necessary.
CopyVar aa.,bb. Done
Varl. must be the name of an existing variable group, . .
- . getVa.rInfo() aa.a "NUM
such as the statistics stat.nn results, or variables N N
. .) aa.b "NUM
created using the LibShortcut() function. If Var2. bh.a "NUM"
already exists, this command replaces all members bbb "NUM"
that are common to both groups and adds the
members that do not already exist. If one or more
members of Var2. are locked, all members of Var2.
are left unchanged.
corrMat() Catalog >

corrMat(List!,List2],..[,List20]])

Computes the correlation matrix for the augmented matrix
[Listl, List2, ..., List20].

Alphabetical Listing 27

cos()
cos(Valuel) = value
cos(Listl) = list

cos(ValueI) returns the cosine of the argument as a
value.

cos(List1) returns a list of the cosines of all elements
inList].

Note: The argument is interpreted as a degree,
gradian or radian angle, according to the current angle
mode setting. You can use °, G or' to override the
angle mode temporarily.

cos(squareMatrix1) = squareMatrix

Returns the matrix cosine of squareMatrix 1. This is
not the same as calculating the cosine of each
element.

When a scalar function f(A) operates on
squareMatrix I (A), the result is calculated by the
algorithm:

Compute the eigenvalues (1) and eigenvectors (V) of
A

squareMatrix I must be diagonalizable. Also, it
cannot have symbolic variables that have not been
assigned a value.

Form the matrices:

MO0 ... 0
0 Ap...0

B= 0 02... 0 andX=[V,V,, ... V]
0 0 ... An

Then A=XB X and f(A) = Xf(B) X"'. For example,
cos(A) =X cos(B) X where:

cos(B) =

In Degree angle mode:

(%) key

((KH 0.707107
COoS||—
4
cos(45) 0.707107
cos({0,60,90}) {1.050.}

In Gradian angle mode:

cos({0,50,100})

{1.,0.707107,0.}

In Radian angle mode:

5

0.707107

005(450)

0.707107

In Radian angle mode:

15
cosl|4 o
6 2

—_ =W

0.212493 0.205064 0.121389
0.160871 0.259042 0.037126
0.248079 -0.090153 0.218972

28 Alphabetical Listing

cos()

cos(A1) O ... 0

0 cos(Ap) ... 0

0 0 .. 0

0 0 cos(An)

All computations are performed using floating-point
arithmetic.

cos™()

cos (Valuel) = value
cos(Listl) = list
cos "'(Value I) returns the angle whose cosine is

Valuel.

cos '(List]) returns a list of the inverse cosines of
each element of List1.

Note: The result is returned as a degree, gradian or
radian angle, according to the current angle mode
setting.

Note: You can insert this function from the keyboard
by typingarccos (...).

cos (squareMatrix1) = squareMatrix

Returns the matrix inverse cosine of squareMatrix 1.
This is not the same as calculating the inverse cosine

of each element. For information about the calculation
method, refer to cos().

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

cosh()

cosh(Valuel) = value
cosh(Listl) = list

(%) key

key
In Degree angle mode:
cos"(l) 0.
In Gradian angle mode:
cos(0) 100.

In Radian angle mode:

cos{0,0.2,0.5})
{1.5708,1.36944,1.0472}

In Radian angle mode and Rectangular Complex
Format:

153
cos™ 4 2 1

6 21
1.73485+0.064606-i -1.49086+2.10514
-0.725533+1.51594+i 0.623491+0.77836%
-2.08316+2.63205+i 1.79018—1.27182-

To see the entire result, press .a and then use ¢ and p
to move the cursor.

Catalog >

In Degree angle mode:

Alphabetical Listing 29

cosh()

cosh(Valuel) returns the hyperbolic cosine of the
argument.

cosh(ListI) returns a list of the hyperbolic cosines of
each element of List1.

cosh(squareMatrix1) = squareMatrix

Returns the matrix hyperbolic cosine of
squareMatrix 1. This is not the same as calculating
the hyperbolic cosine of each element. For
information about the calculation method, refer to cos

0-

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

cosh™()

cosh™(Valuel) = value
cosh™(Listl) = list
cosh(ValueI) returns the inverse hyperbolic cosine

of the argument.

cosh(List!) returns a list of the inverse hyperbolic
cosines of each element of List1.

Note: You caninsert this function from the keyboard
by typingarccosh (...).

cosh(squareMatrix 1) = squareMatrix

Returns the matrix inverse hyperbolic cosine of
squareMatrix 1. This is not the same as calculating
the inverse hyperbolic cosine of each element. For
information about the calculation method, refer to cos

0-

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

cot()

Catalog >

1.74671€E19

b

In Radian angle mode:

153
coshflg » 1
6 21
421.255 253.909 216.905
327.635 255.301 202.958
226.297 216.623 167.628
Catalog>
cosh"(l) 0

cosh{{1,21,3}) {0,1.37286,cosh"(3]}

In Radian angle mode and In Rectangular Complex
Format:

1 5 3

coshf|4 » 1

6 2 1
2.52503+1.73485-i
0.486969-0.725533-i
-0.322354—2.08316-i

-0.009241—1.4908¢
1.66262+0.623491
1.26707+1.79018:

To see the entire result, press a and then use ¢and p
to move the cursor.

key
In Degree angle mode:

30 Alphabetical Listing

cot()

cot(Valuel) = value
cot(Listl) = list

Returns the cotangent of Value I or returns a list of
the cotangents of all elements in List1.

Note: The argument is interpreted as a degree,

gradian or radian angle, according to the current angle

mode setting. You can use °, G or' to override the
angle mode temporarily.

cot™()

cot(Valuel) = value
cot(Listl) = list

Returns the angle whose cotangent is Value I or
returns a list containing the inverse cotangents of
each element of List].

Note: The result is returned as a degree, gradian or
radian angle, according to the current angle mode
setting.

Note: You caninsert this function from the keyboard
by typingarccot(...).

coth()

coth(Valuel) = value
coth(Listl) = list

Returns the hyperbolic cotangent of Value I or returns
a list of the hyperbolic cotangents of all elements of
Listl.

key
cot(45) 1.
In Gradian angle mode:
cot(50) 1.

In Radian angle mode:

cotl{1,2.1,3})
{0.642093,-0.584848,-7.01525 }

key
In Degree angle mode:
cot™(1) 45
In Gradian angle mode:
cot™(1) 50
In Radian angle mode:
cot(1) 785398
Catalog >
coth(1.2) 1.19954
coth({1,3.2}) {1.31304,1.00333}

Alphabetical Listing 31

coth™()

coth™'(Valuel) = value
coth™(Listl) = list

Returns the inverse hyperbolic cotangent of Valuel or
returns a list containing the inverse hyperbolic
cotangents of each element of List].

Note: You caninsert this function from the keyboard
by typingarccoth(...).

count()
count(Value lorListl [, Value2orList2 [,...]]1) = value

Returns the accumulated count of all elements in the
arguments that evaluate to numeric values.

Each argument can be an expression, value, list, or
matrix. You can mix data types and use arguments of
various dimensions.

For a list, matrix, or range of cells, each element is
evaluated to determine if it should be included in the
count.

Within the Lists & Spreadsheet application, you can
use a range of cells in place of any argument.

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

countif()
countif(List,Criteria) = value

Returns the accumulated count of all elements in Lis¢
that meet the specified Criteria.

Criteria can be:

. Avalue, expression, or string. For example, 3
counts only those elements in List that simplify
tothe value 3.

. A Boolean expression containing the symbol ?

Catalog >

0.293893

coth(3.5)
coth'({-2,2.1,6})
{-0.549306,0.518046,0.168236 }

Catalog >

counl(2,4,6) 3

count({2,4,6}) 3

count(Z,{4,6 }, 8 10D 7
12 14

Catalog >

coumIt({ 1,3,"abc" ,undef,3,1 })3) 5

Counts the number of elements equal to 3.

CounlIf({ “abc”,”def”,“abc”,3},”def”) 1

Counts the number of elements equal to “def.”

32 Alphabetical Listing

countif()

as a placeholder for each element. For
example, ?<5 counts only those elements in
List that are less than 5.

Within the Lists & Spreadsheet application, you can
use arange of cells in place of List.

Empty (void) elements in the list are ignored. For
more information on empty elements, see page 177.

Note: See also sumlf(), page 135, and frequency(),
page 54.

cPolyRoots()
cPolyRoots(Poly,Var) = list
cPolyRoots(ListOfCoeffs) = list

The first syntax, cPolyRoots(Poly, Var), returns a list
of complex roots of polynomial Poly with respect to
variable Var.

Poly must be a polynomial in expanded form in one
variable. Do not use unexpanded forms such as
y2ep+1orxex+2ex+1

The second syntax, cPolyRoots(ListOfCoeffs),
returns a list of complex roots for the coefficients in

ListOfCoeffs.
Note: See also polyRoots(), page 101.

crossP()
crossP(Listl, List2) = list
Returns the cross product of List/ and List2 as a list.

List] and List2 must have equal dimension, and the
dimension must be either 2 or 3.

crossP(Vectorl, Vector2) = vector

Returns a row or column vector (depending on the
arguments) that is the cross product of Vectorl and

Catalog >

countlf{{1,3,5,7,9},2<5) 2

Counts 1and 3.

countIf{{1,3,5,7,9},2<7<8) 3

Counts 3, 5,and 7.

countIf{{1,3,5,7,9},7<4 or 2>6) 4

Counts 1,3,7,and 9.

Catalog >

polyRoots(strly) { 1 }

cPolyRoots(}13+1 y)
{-1,0.5-0.866025+,0.5+0.866025+ }

{-1,-1}
{-1,1}

polyRoots(x2+2'x+ l,x)

CPO]yROOtS({ 1,21 })

Catalog >

crossP({0.1,2.2,-5},{1,-0.5,0})
{255,225}

[6 3]
[o 0o 2]

crossP([1 2 3][4 5 6]
crossP([l 2],[3 4])

Alphabetical Listing 33

crossP()
Vector?2.

Both Vectorl and Vector2 must be row vectors, or
both must be column vectors. Both vectors must
have equal dimension, and the dimension must be
either 2 or 3.

csc()

csc(Valuel) = value
csc(Listl) = list

Returns the cosecant of Value I or returns a list
containing the cosecants of all elements in List].

csc()

csc'(Valuel) = value
csc(Listl) = list

Returns the angle whose cosecant is Valuel or
returns a list containing the inverse cosecants of each
element of List].

Note: The result is returned as a degree, gradian or
radian angle, according to the current angle mode
setting.

Note: You caninsert this function from the keyboard
by typingarcesc(...).

Catalog >

key
In Degree angle mode:
cscl45) 1.41421
In Gradian angle mode:
ese(50) 1.41421
In Radian angle mode:

1.1884,1.,1.1547
/122 { }
23

key
In Degree angle mode:
csc"(l) 90
In Gradian angle mode:
csc(1) 100

In Radian angle mode:

esc({1,46}) {1.5708,0.25268,0.167448 }

34 Alphabetical Listing

csch()
csch(Valuel) = value
csch(Listl) = list

Returns the hyperbolic cosecant of Value I or returns
a list of the hyperbolic cosecants of all elements of
Listl.

csch()

csch(Value) = value
csch™(Listl) = list

Returns the inverse hyperbolic cosecant of Valuel or
returns a list containing the inverse hyperbolic
cosecants of each element of List!.

Note: You can insert this function from the keyboard
by typingarcesch(...).

CubicReg
CubicReg X, Y, [Freq] [, Category, Include]]

Catalog >

esch(3) 0.099822

esch({1,2.1,4})
{0.850918,0.248641,0.036644 }

Catalog >

csch(1) 0.881374

esch({1,2.1,3})
{0.881374,0.459815,0.32745 }

Catalog >

Computes the cubic polynomial regression y=asx3+bex2+cex+d
on lists Xand Y with frequency Freq. A summary of results is

stored in the stat. results variable. (See page 131.)

All the lists must have equal dimension except for Include.

Xand Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be

integers >0.

Category is a list of numeric or string category codes for the

corresponding X'and Y data.

Include is a list of one or more of the category codes. Only those

data items whose category code is included in this list are

included in the calculation.

For information on the effect of empty elements in a list, see

“Empty (Void) Elements,” page 177.

Alphabetical Listing 35

Output
. Description

variable ot

stat.RegEqn Regression equation: asx3+bsx2+cex+d

stat.a, stat.b, Regression coefficients

stat.c, stat.d

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,

Category List, and Include Categories
stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

cumulativeSum() Catalog >

cumulativeSum(List[) = list cumulaliveSum({ 1,2,3,4}) { 1,3,6,10}

Returns a list of the cumulative sums of the elements

in Listl, starting at element 1.

cumulativeSum(Matrix) = matrix 1 2 12
. . 3 4|>ml 34

Returns a matrix of the cumulative sums of the z

elements in Matrix 1. Each element is the cumulative > 6 > 6

sum of the column from top to bottom. cumulativeSum({m] 12

4 6

An empty (void) element in List] or Matrix I produces 9 12

avoid element in the resulting list or matrix. For more

information on empty elements, see page 177.

Cycle Catalog >

Cycle Function listing that sums the integers from 1to 100

Transfers control immediately to the next iteration of

skipping 50.

the current loop (For, While, or Loop). Define g():Func Done
Cycle is not allowed outside the three looping I(;OCZI tempi

. — temp

truct .
structures (For, While, or Loop) For i.1,100,1
Note for entering the example: In the Calculator If i=50
application on the handheld, you can enter multi-line Cycle
definitions by pressing (<] instead of at the end temp+i— temp
of each line. On the computer keyboard, hold down Alt EndFor
and press Enter. Return temp
EndFunc
gl) 5000_

36 Alphabetical Listing

» Cylind
Vector »Cylind

Note: You caninsert this operator from the computer
keyboard by typing @>Cylind.

Displays the row or column vector in cylindrical form
[r,£6, z].

Vector must have exactly three elements. It can be
either a row or a column.

D

dbd()
dbd(date 1,date2) = value

Returns the number of days between date I and date?
using the actual-day-count method.

datel and date2 can be numbers or lists of numbers
within the range of the dates on the standard
calendar. If both date I and date? are lists, they must
be the same length.

date I and date2 must be between the years 1950
through 2049.

You can enter the dates in either of two formats. The
decimal placement differentiates between the date
formats.

MM.DDYY (format used commonly in the United
States)
DDMM.YY (format use commonly in Europe)

»DD

Expri »DD = valueList]
»DD = listMatrix1
»DD = matrix

Note: You can insert this operator from the computer
keyboard by typing @>DD.

Returns the decimal equivalent of the argument

Catalog >

[2 2 3]rCylind
[2.82843 £.0.785398 3.]

Catalog >
dbd(12.3103,1.0104) 1
dbd(1.0107,6.0107) 151
dbd(3112.03,101.04) 1
dbd(101.07,106.07) 151

Catalog > HE
In Degree angle mode:
(1.5°)»DD 1.5°
(45°22'14.3")»DD 45.3706°

({45°22'14.3",60°00" }}» DD
{45.3706°,60° }

Alphabetical Listing 37

»DD

expressed in degrees. The argument is a number, list,
or matrix that is interpreted by the Angle mode setting

in gradians, radians or degrees.

»Decimal
Numberl »Decimal = value
List] »Decimal = value

Matrix1 »Decimal = value

Note: You can insert this operator from the computer

keyboard by typing @>Decimal.

Displays the argument in decimal form. This operator

can be used only at the end of the entry line.

Define

Define Var = Expression

Define Function(Paraml, Param2, ...) = Expression

Defines the variable Var or the user-defined function

Function.

Parameters, such as Paraml, provide placeholders
for passing arguments to the function. When calling a
user-defined function, you must supply arguments
(for example, values or variables) that correspond to
the parameters. When called, the function evaluates

Expression using the supplied arguments.

Var and Function cannot be the name of a system

variable or built-in function or command.

Note: This form of Define is equivalent to executing

the expression: expression — Function
(Paraml, Param?).

Catalog >

In Gradian angle mode:

1»DD 9.,
10
In Radian angle mode:
(1.5)»DD 85.9437°
Catalog > [
i>Decimal 0.333333
3
Catalog > Elﬂ
Define g(x,y):2~xf3'y Done
gl1.2) 4
1-a:2-b: g(a,b) 4
Define h(x):When(x<2,2~X*3,’2~x+3) Done
(-3) 9
nl4) -5

38 Alphabetical Listing

Define Catalog >

Define Function(Paraml, Param2, ...)= Func Define glx,y)=Func Done
Block If x>y Then
EndFunc Return x
Else
Return y
Define Program(Paraml, Param?2, ...)= Prgm EndIf
Block EndFunc
EndPrgm £l3.7) 3

In this form, the user-defined function or program can
execute a block of multiple statements.

Define g(x,y):Prgm
If x>y Then
Disp x," greater than ",y

Block can be either a single statement or a series of
statements on separate lines. Block also can include

expressions and instructions (such as If, Then, Else, Else
and For). Disp x," not greater than ",y
EndIf

Note for entering the example: In the Calculator

application on the handheld, you can enter multi-line EndPrgm

definitions by pressing (<] instead of at the end Done
of each line. On the computer keyboard, hold down Alt 83,7

and press Enter. 3 greater than -7
Note: See also Define LibPriv, page 39, and Define Done
LibPub, page 40.

Define LibPriv Catalog >

Define LibPriv Var = Expression
Define LibPriv Function(Paraml, Param2, ...)= Expression

Define LibPriv Function(Paraml, Param2, ...) = Func
Block
EndFunc

Define LibPriv Program(Paraml, Param2, ...)= Prgm
Block
EndPrgm

Operates the same as Define, except defines a private library
variable, function, or program. Private functions and programs do
not appear in the Catalog.

Note: See also Define, page 38, and Define LibPub, page 40.

Alphabetical Listing 39

Define LibPub Catalog >

Define LibPub Var = Expression
Define LibPub Function(Paraml, Param2, ...)= Expression

Define LibPub Function(Paraml, Param2, ...) = Func
Block
EndFunc

Define LibPub Program(Paramli, Param?2, ...)= Prgm
Block
EndPrgm

Operates the same as Define, except defines a public library
variable, function, or program. Public functions and programs
appear in the Catalog after the library has been saved and
refreshed.

Note: See also Define, page 38, and Define LibPriv, page 39.

deltaList() See AList(), page 73.
DelVar Catalog >
DelVar Varl[, Var2] [, Var3] ... 254 2
DelVar Var. (a +2)2 16
Deletes the specified variable or variable group from DelVar a Done
memory. (a+2)2 "Error: Variable is not defined"
If one or more of the variables are locked, this
command displays an error message and deletes only
the unlocked variables. See unLock, page 147.
DelVar Var. deletes all members of the Var. variable aa.a—45 45
group (such as the statistics stat.nn results or 5,67
aa.p:=>o.
variables created using the LibShortcut() function).
The dot (.) in this form of the DelVar command limits it~ 44-¢:=78.9
to deleting a variable group; the simple variable Var is gelVarInfo() aa.a "NUM"
not affected. aa.b "NUM" "Li
aa.c HNUMH " E__E”
DelVar aa. Done
getVarInfol) "NONE"

40 Alphabetical Listing

delVoid() Catalog >

delVoid(List1) = list delVOid({ 1,void,3}) {1,3}
Returns a list that has the contents of Lis¢/ with all
empty (void) elements removed.

For more information on empty elements, see page

177.
det() Catalog >
det(squareMatrix|, Tolerance]) = expression del([l 2D >
Returns the determinant of squareMatrix. 3 4
Optionally, any matrix element is treated as zero if its [1';20 ﬂ ~matl [1';20 ﬂ
absolute value is less than Tolerance. This tolerance
is used only if the matrix has floating-point entries and detlmat1) 0
does not contain any symbolic variables that have not det(matl,.l) 1.e20
been assigned a value. Otherwise, Tolerance is
ignored.
. If you use [etn] [enter] or set the Auto or
Approximate mode to Approximate,
computations are done using floating-point
arithmetic.
. If Tolerance is omitted or not used, the default
tolerance is calculated as:
5E 14 *max(dim(squareMatrix))srowNorm
(squareMatrix)
diag() Catalog >
diag(List) = matrix diag{[2 4 6]) 200
diag(rowMatrix) = matrix 040
diag(columnMatrix) = matrix 006
Returns a matrix with the values in the argument list
or matrix in its main diagonal.
diag(squareMatrix) = rowMatrix 4 6 8 6 8
Returns a row matrix containing the elements from 123 123
L . 57 9 579
the main diagonal of squareMatrix.
diag Ans) [4 2 9]

squareMatrix must be square.

Alphabetical Listing 41

dim()

dim(List) = integer

Returns the dimension of List.
dim(Matrix) = list

Returns the dimensions of matrix as a two-element
list {rows, columns}.

dim(String) = integer

Returns the number of characters contained in
character string String.

Disp
Disp [exprOrStringI] [, exprOrString?2] ...

Displays the arguments in the Calculator history.
The arguments are displayed in succession, with thin
spaces as separators.

Useful mainly in programs and functions to ensure the
display of intermediate calculations.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing (<] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

»DMS

Value »DMS
List »DMS
Matrix »DMS

Note: You caninsert this operator from the computer
keyboard by typing @ >DMS.

Interprets the argument as an angle and displays the
equivalent DMS (DDDDDD°MM'SS.ss") number.
See®, ', " on page 172 for DMS (degree, minutes,

Catalog >

dim{{0,1,2}) 3
11 32
dim| 2 2 { }

3 5
dim("Hello") 5
dim("Hello "&"there") 11
Catalog >

Define chars(start,end):Prgm
For i,start,end
Disp i," " ,char(i)
EndFor
EndPrgm
Done

chars(240,243)
240 &
241
242
243

o

o

Done

Catalog >

In Degree angle mode:

(45.371)»DMS 45°22'15.6"
({45371,60})pDMs {45°2215.6",60° }

42 Alphabetical Listing

»DMS Catalog >
seconds) format.

Note: »DMS will convert from radians to degrees
when used in radian mode. If the input is followed by a
degree symbol ° , no conversion will occur. You can
use »DMS only at the end of an entry line.

dotP() Catalog >
dotP(Listl, List2) = expression dotP({ 1.2 },{5,6}) 17

Returns the “dot” product of two lists.

dotP(Vectorl, Vector2) = expression dotP([l 2 3] [4 5 6]) 32

Returns the “dot” product of two vectors.

Both must be row vectors, or both must be column
vectors.

E

er() key
e*(Valuel) = value 1 2.71828
e R
Returns eraised to the Value I power.
p o3 8103.08

Note: See also eexponent template, page 6.

Note: Pressing (ex] to display e*(is different from
pressing the character (E] on the keyboard.

You can enter a complex humber in reo polar form.
However, use this form in Radian angle mode only; it
causes a Domain error in Degree or Gradian angle
mode.

eMListl) = list ol11.05} {2.71828,2.71828,1.64872 }

Returns eraised to the power of each element in
Listl.

Alphabetical Listing 43

e"()
e™(squareMatrix 1) = squareMatrix

Returns the matrix exponential of squareMatrix1.
This is not the same as calculating e raised to the
power of each element. For information about the
calculation method, refer to cos().

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

eff()
eff(nominalRate, CpY) = value

Financial function that converts the nominal interest
rate nominalRate to an annual effective rate, given
CpY as the number of compounding periods per year.

nominalRate must be a real number, and CpY must
be a real number > 0.

Note: See also nom(), page 91.

eigVc()
eigVc(squareMatrix) = matrix

Returns a matrix containing the eigenvectors for a
real or complex squareMatrix, where each columnin
the result corresponds to an eigenvalue. Note that an
eigenvector is not unique; it may be scaled by any
constant factor. The eigenvectors are normalized,
meaning that:

if V=[x1, X xn]
2 2 2=
thenx1 XS LX) =1

squareMatrix is first balanced with similarity
transformations until the row and column norms are
as close to the same value as possible. The
squareMatrix is then reduced to upper Hessenberg
form and the eigenvectors are computed via a Schur
factorization.

(=] key

153 782.209 559.617 456.509
4 2 1 680.546 488.795 396.521
ol6 21 524.929 371.222 307.879
Catalog>
efff5.75,12) 5.90398
Catalog>
In Rectangular Complex Format:
-1 25 -1 25
3 -6 9|>ml 3 6 9
2 57 2 57
eich(m])
-0.800906 0.767947 (

0.484029 0.573804-+0.052258-i 0.5738*
0.352512 0.262687+0.096286+i 0.2626.

To see the entire result, press a and then use ¢ and p
to move the cursor.

44 Alphabetical Listing

eigVI()
eigVi(squareMatrix) = list

Returns a list of the eigenvalues of a real or complex
squareMatrix.

squareMatrix is first balanced with similarity
transformations until the row and column norms are
as close to the same value as possible. The
squareMatrix is then reduced to upper Hessenberg
form and the eigenvalues are computed from the
upper Hessenberg matrix.

Else

Elself

If BooleanExprl Then
Blockl

Elself BooleanExpr2 Then
Block2

Elself BooleanExprN Then
BlockN
EndIf

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing (<] instead of at the end

of each line. On the computer keyboard, hold down Alt

and press Enter.

EndFor

EndFunc

Catalog >

In Rectangular complex format mode:

125 125
3 -6 9|>ml 369
2 57 2 57
eing(m])

{ -4.40941,2.20471+0.763006°1,2.20471—-0.”

To see the entire result, press a and then use ¢and p
to move the cursor.

See If, page 61.

Catalog >

Define g(x):Func
If x<-5 Then
Return 5
Elself x>-5 and x<0 Then
Return ~x
ElseIf x>0 and x#10 Then
Return x
Elself x=10 Then
Return 3
EndIf
EndFunc
Done

See For, page 52.

See Func, page 55.

Alphabetical Listing 45

EndIf

EndLoop

EndPrgm

EndTry

EndWhile

euler ()

euler(Expr, Var, depVar, {Var0, VarMax}, depVar0,
VarStep [, eulerStep]) = matrix

euler(SystemOfExpr, Var, ListOfDepVars, {Var0,
VarMax}, ListOfDepVars0, VarStep [, eulerStep])
= matrix

euler(ListOfExpr, Var, ListOfDepVars, {Var0,
VarMax}, ListOfDepVars0, VarStep [, eulerStep]) =
matrix

Uses the Euler method to solve the system
d depVar
dVar

with depVar(Var0)=depVar0 on the interval
[Var0,VarMax]. Returns a matrix whose first row
defines the Var output values and whose second row
defines the value of the first solution component at
the corresponding Var values, and so on.

= Expr(Var,depVar)

Expris the right-hand side that defines the ordinary
differential equation (ODE).

See If, page 61.

See Loop, page 79.
See Prgm, page 102.
See Try, page 141.

See While, page 149.

Catalog >

Differential equation:

y'=0.001*y*(100-y) and y(0)=10

euler{0.001+y+(100),4,{0,100},10,1)
0. 1. 2. 3. 4.,
10. 10.9 11.8712 12.9174 14.04

To see the entire result, press a and then use ¢ and p
to move the cursor.

System of equations:

yI'=y1+0.1-y1-y2
2=3-y2-yl-y2
with y1(0)=2 and y2(0)=5
H-y1+0.1-y1-y2 y |
eulerrl[3.y27y1.y2 ,t,{nyZ},{OfU,{25}1)
0. 1. 2. 3. 4. 5.

2. 1. 1. 3. 27. 243.
5. 10. 30. 90. 90. -2070.

46 Alphabetical Listing

euler ()

SystemOfExpr is the system of right-hand sides that
define the system of ODEs (corresponds to order of
dependent variables in ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the
system of ODEs (corresponds to the order of
dependent variables in ListOfDepVars).

Var is the independent variable.
ListOfDepVars is a list of dependent variables.

{Var0, VarMax} is a two-element list that tells the
function to integrate from Var0to VarMax.

ListOfDepVars0is a list of initial values for dependent
variables.

VarStep is a nonzero number such that sign(VarStep)
=sign(VarMax-Var0) and solutions are returned at
VarO+isVarStep for all i=0,1,2,... such that
VarO+isVarStep is in [var0,VarMax] (there may not
be a solution value at VarMax).

eulerStep is a positive integer (defaults to 1) that
defines the number of euler steps between output
values. The actual step size used by the euler method
is VarStep / eulerStep.

Exit
Exit
Exits the current For, While, or Loop block.

Exit is not allowed outside the three looping structures
(For, While, or Loop).

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing [+] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

Catalog >

Catalog >

Function listing:

Define g():Func Done

Local temp,i

0 temp

For 1,1,100,1
temp+i— temp

If temp>20 Then
Exit

EndIf

EndFor
EndFunc

21

Alphabetical Listing 47

exp()

exp(Valuel) = value

Returns eraised to the Value I power.

Note: See also e exponent template, page 6.

You can enter a complex number in refo polar form.
However, use this form in Radian angle mode only; it
causes a Domain error in Degree or Gradian angle
mode.

exp(Listl) = list

Returns eraised to the power of each element in
Listl.

exp(squareMatrix1) = squareMatrix

Returns the matrix exponential of squareMatrix1.
This is not the same as calculating e raised to the
power of each element. For information about the
calculation method, refer to cos().

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

expr()

expr(String) = expression

Returns the character string contained in String as an
expression and immediately executes it.

ExpReg
ExpReg X, Y [, [Freq] [, Category, Include]]

(=] key

ol 2.71828
2 8103.08

e3

ol11.05) {2.71828,2.71828,1.64872 }

15 3] [782.209 559.617 456.509
4 2 1| |680.546 488.795 396.521
el6 2 1] 524929 371.222 307.879

Catalog >

"Define cube(x)=x"3" - funcstr
"Define cube(x)=x"3"

expr(ﬁmcstr) Done
cube(2) 8
Catalog >

Computes the exponential regression y = a«(b)* on lists Xand Y
with frequency Freq. A summary of results is stored in the

stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

Xand Y are lists of independent and dependent variables.

Freq s an optional list of frequency values. Each element in Freg
specifies the frequency of occurrence for each corresponding X

48 Alphabetical Listing

ExpReg Catalog >
and Y data point. The default value is 1. All elements must be

integers > 0.

Category is a list of numeric or string category codes for the
corresponding X'and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

\(/):r::;:e Description

stat.RegEqgn Regression equation: a«(b)*

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformed data
stat.r Correlation coefficient for transformed data (x, In(y))
stat.Resid Residuals associated with the exponential model

stat.ResidTrans | Residuals associated with linear fit of transformed data

stat. XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat. XReg and stat. YReg

F

factor() Catalog >
factor(rational Number) returns the rational number factor(152417172689) 123457-1234577
factored into primes. For composite numbers, the isPrime(152417172689) false

computing time grows exponentially with the number
of digits in the second-largest factor. For example,
factoring a 30-digit integer could take more than a
day, and factoring a 100-digit number could take more
than a century.

To stop a calculation manually,

Alphabetical Listing 49

factor()

. Windows®: Hold down the F12 key and press

Enter repeatedly.

. Macintosh®: Hold down the F5 key and press
Enter repeatedly.

. Handheld: Hold down the key and press
repeatedly.

If you merely want to determine if a number is prime,
use isPrime() instead. It is much faster, particularly if
rationalNumber is not prime and if the second-largest
factor has more than five digits.

Catalog >

FCdf() Catalog >

FCdf(lowBound,upBound,dfNumer,dfDenom) = number if

lowBound and upBound are numbers, list if lowBound and

upBound are lists

FCdf(lowBound,upBound,dfNumer,dfDenom) = number if

lowBound and upBound are numbers, list if lowBound and

upBound are lists

Computes the F distribution probability between lowBound and

upBound for the specified dfNumer (degrees of freedom) and

dfDenom.

For P(X<upBound), set lowBound =0.

Fil Catalog >

Fill Value, matrixVar = matrix [1 2J = amatrix [1 zJ

Replaces each element in variable matrix Var with 3.4 34

Value. Fill 1.01,amatrix Done
. . amatrix 1.01 1.01

matrix Var must already exist. 1.0l 1.01

Fill Value, listVar = list {1,23,4,5} > alist {12345}

Replaces each element in variable /istVar with Value. Fill 1.01,alist Done

alist {1.01,1.01,1.01,1.01,1.01}

listVar must already exist.

50 Alphabetical Listing

FiveNumSummary Catalog >
FiveNumSummary X[,[Freql[,Category,Include]]

Provides an abbreviated version of the 1-variable statistics on list
X. Asummary of results is stored in the stat.results variable.
(See page 131.)

Xrepresents a list containing the data.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1.

Category is a list of numeric category codes for the
corresponding X data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

An empty (void) element in any of the lists X, Freq, or Category
results in a void for the corresponding element of all those lists.
For more information on empty elements, see page 177.

Output variable Description

stat.MinX Minimum of x values.

stat.Q1X 1st Quartile of x.

stat.MedianX Median of x.

stat.03X 3rd Quartile of x.

stat.MaxX Maximum of x values.

floor() Catalog >
floor(Valuel) = integer floor{-2.14) -3,

Returns the greatest integer that is < the argument.
This function is identical to int().

The argument can be a real or a complex humber.

floor(List1) = list 3 {1,076}
. . floor| —,0,75.3
floor(Matrix 1) = matrix

Returns a list or matrix of the floor of each element. ﬂoorﬂLz 3'4J] [1‘ 3.
25 48]

d

Note: See also ceiling() and int().

Alphabetical Listing 51

For Catalog >
For Var, Low, High|, Step] Define g():Func Done
Block Local tempsum,step,i
EndFor 0 tempsum
Executes the statements in Block iteratively for each 1> step
L For 1,1,100,step
value of Var, from Low to High, inincrements of Step. A
tempsum-+i— tempsum
Var must not be a system variable. EndFor
Step can be positive or negative. The default value is FndFunc
1. gl) 5050
Block can be either a single statement or a series of
statements separated with the “:” character.
Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing (<] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.
format() Catalog >
format(Valuel, formatString]) = string format(1.234567," 3") "1.235"
Returns Value as a character string based on the format(1.234567,"s2") "1.23e0"
format template. format(1.234567,"e3") "1.235€0"
formatString is a string and must be in the form: “F fomat(1'234567’ 83) 1.235
[n]". “S[nl", “E[n]". “GIn][c]", where [] indicate optional format(1234.567,"g3") 1,234,567
portions. format(1.234567," g3,r:") "1:235"

F[n]: Fixed format. nis the number of digits to display
after the decimal point.

S[n]: Scientific format. n is the number of digits to
display after the decimal point.

E[n]: Engineering format. n is the number of digits
after the first significant digit. The exponent is
adjusted to a multiple of three, and the decimal point
is moved to the right by zero, one, or two digits.

G[n][c]: Same as fixed format but also separates
digits to the left of the radix into groups of three. ¢
specifies the group separator character and defaults
toacomma. If ¢ is a period, the radix will be shown as
acomma.

52 Alphabetical Listing

format()

[Rc]: Any of the above specifiers may be suffixed
with the Rc radix flag, where c is a single character
that specifies what to substitute for the radix point.

fPart()

fPart(Exprl) = expression
fPart(Listl) = list
fPart(Matrix 1) = matrix

Returns the fractional part of the argument.

For a list or matrix, returns the fractional parts of the
elements.

The argument can be a real or a complex humber.

FPdf()

Catalog >

Catalog >

fPart(-1.234) -0.234

fPart({ 1,-2.3,7.003}) {0,-0.3,0.003}

Catalog >

FPdf(XVal,dfNumer,dfDenom) = number if XVal is a number,

listif XVal is a list

Computes the F distribution probability at XVal for the specified

dfNumer (degrees of freedom) and dfDenom.

freqTable» list()
freqTablew list(List 1 fieqIntegerList) = list

Returns a list containing the elements from List/
expanded according to the frequencies in
fregintegerList. This function can be used for building
a frequency table for the Data & Statistics application.

ListI can be any valid list.

fregintegerList must have the same dimension as
List] and must contain non-negative integer elements
only. Each element specifies the number of times the
corresponding List] element will be repeated in the
result list. A value of zero excludes the corresponding
List1 element.

Note: You caninsert this function from the computer
keyboard by typing freqTable@>1ist(...).

Catalog >

freqTabler list{{1,2,3,4},{1,4,3,1})
{1,22223334}

freqTabler list{{1,2,3,4},{1,4,0,1})
{122,224}

Alphabetical Listing 53

freqTable» list()

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

frequency()
frequency(List1, binsList) = list

Returns a list containing counts of the elements in
Listl. The counts are based on ranges (bins) that you
define in binsList.

If binsList is {b(1), b(2), .., b(n)}, the specified ranges
are {?<b(1), b(1)<?<b(2),...,b(n-1)<?<b(n), b(n)>?}. The
resulting list is one element longer than binsList.

Each element of the result corresponds to the number
of elements from List¢! that are in the range of that
bin. Expressed in terms of the countlf() function, the
result is { countlf(list, ?<b(1)), countlf(list, b(1)<?<b
(2)), .., countlf(list, b(n-1)<?<b(n)), countlf(list, b(n)
>?)h

Elements of List] that cannot be “placed in a bin” are
ignored. Empty (void) elements are also ignored. For
more information on empty elements, see page 177.

Within the Lists & Spreadsheet application, you can
use a range of cells in place of both arguments.

Note: See also countlf(), page 32.

FTest_2Samp

FTest_2Samp Listl,List2[,Freql[,Freq2[,Hypoth]]]
FTest_2Samp List!,List2[,Freql[,Freq2[,Hypoth]]]
(Data list input)

FTest_2Samp sx/,nl,sx2,n2[,Hypoth]
FTest_2Samp sx/,nl,sx2,n2[,Hypoth]

(Summary stats input)

Catalog >

Catalog >
datalist={1,2,,37,4,5,6,"hello",7 }

{1,2,2.71828,3,3.14159,4,5,6,"hello ", 7}

frequency(datalixt, { 2.5,4.5 }) { 2,43 }

Explanation of result:

2 elements from Datalist are <2.5

4 elements from Datalist are >2.5 and <4.5
3 elements from Datalist are >4.5

The element “hello” is a string and cannot be placed
in any of the defined bins.

Catalog >

Performs a two-sample F test. Asummary of results is stored in

the stat.results variable. (See page 131.)

54 Alphabetical Listing

FTest_2Samp

ForH_: o1>02, set Hypoth>0
For Ha: o1+#02 (default), set Hypoth =0
ForH,: o1<02, set Hypoth<0

Catalog >

For information on the effect of empty elements in a list, see

Empty (Void) Elements, page 177.

Output variable Description
stat.F Calculated F statistic for the data sequence
stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.dfNumer numerator degrees of freedom = n1-1
stat.dfDenom denominator degrees of freedom = n2-1
stat.sx1, stat.sx2 Sample standard deviations of the data sequences in List / and List 2
stat.x1_bar Sample means of the data sequences in List / and List 2
stat.x2_bar
stat.n1, stat.n2 Size of the samples
Func Catalog >
Func Define a piecewise function:
Block Defi () B D
efine glx)=Func one
EndFunc g .
If x<O Then
Template for creating a user-defined function. Return 3~cos(x)
Else
Block can be a single statement, a series of
) Return 3—x
statements separated with the “:” character, or a EndIf
series of statements on separate lines. The function EndFunc
can use the Return instruction to return a specific
result. Result of graphing g(x)
Note for entering the example: In the Calculator X
6

application on the handheld, you can enter multi-line
definitions by pressing [+] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

/\ /5 #1(x)=g(x)
[AVAIINGEN

Alphabetical Listing 55

G

ged()

gcd(Numberl, Number2) = expression

Returns the greatest common divisor of the two
arguments. The ged of two fractions is the ged of their
numerators divided by the lcm of their denominators.

In Auto or Approximate mode, the ged of fractional

floating-point numbers is 1.0.
ged(Listd, List2) = list

Returns the greatest common divisors of the
corresponding elements in List/ and List2.

ged(Matrix 1, Matrix2) = matrix

Returns the greatest common divisors of the

corresponding elements in Matrix 1 and Matrix?2.

geomCdfi()

Catalog >
gcd(18,33) 3
ged({12,14,16},{9,7,5}) {3,7.1}

= il i) B

Catalog >

geomCdf(p,lowBound,upBound) = number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

geomCdf(p,upBound)for P(1<X<upBound) = number if upBound

is anumber, list if upBound is a list

Computes a cumulative geometric probability from lowBound to

upBound with the specified probability of success p.

For P(X <upBound), set lowBound =1.

geomPdf()

Catalog >

geomPdf(p, XVal) = number if XVal is a number, listif XValis a

list

Computes a probability at XVal, the number of the trial on which
the first success occurs, for the discrete geometric distribution

with the specified probability of success p.

56 Alphabetical Listing

getDenom()
getDenom(Fractionl) = value

Transforms the argument into an expression having a
reduced common denominator, and then returns its
denominator.

getLanglinfo()
getLanginfo() = string

Returns a string that corresponds to the short name
of the currently active language. You can, for
example, use it in a program or function to determine
the current language.

English =“en”
Danish =“da”
German =“de”
Finnish = “fi”
French =“fr’
Italian = “it”
Dutch =“nl”

Belgian Dutch =“nl_BE”
Norwegian = “no”
Portuguese = “pt”
Spanish = “es”

Swedish ="“sv”

getLockInfo()
getLockInfo(Var) = value

Returns the current locked/unlocked state of variable
Var.

value =0: Varis unlocked or does not exist.

value =1: Var is locked and cannot be modified or
deleted.

See Lock, page 76, and unLock, page 147.

Catalog >

x:=5: y:=6 6
+2
getDenom(x—)
2 7
getDenom(—)
7
2 30
1 +
getDenom R Zy
Ty
Catalog >
getLangInfo() "en"
Catalog >
a:=65 65
Lock a Done
getLockInfo(a) 1
a:=75 "Error: Variable is locked."
DelVar a "Error: Variable is locked."
Unlock a Done
a:=75 75
DelVar a Done

Alphabetical Listing 57

getMode() Catalog >

getMode(ModeNamelnteger) = value getMode(O)

getMode(0) = /ist {1,7.21314,1516,171}

getMode(ModeNamelnteger) returns a value getMode(l) 7

representing the current setting of the

ModeNamelnteger mode. getMode(7) 1

getMode(0) returns a list containing number pairs.

Each pair consists of a mode integer and a setting

integer.

For alisting of the modes and their settings, refer to

the table below.

If you save the settings with getMode(0) — var, you

can use setMode(var) in a function or program to

temporarily restore the settings within the execution

of the function or program only. See setMode(), page

122.

Mode Mode

Name Integer Setting Integers

Display 1 1=Float, 2=Float1, 3=Float2, 4=Float3, 5=Float4, 6=Float5, 7=Float6,

Digits 8=Float7, 9=Float8, 10=Float9, 11=Float10, 12=Float11, 13=Float12,
14=Fix0, 15=Fix1, 16=Fix2, 17=Fix3, 18=Fix4, 19=Fix5, 20=Fix6, 21=Fix7,
22=Fix8, 23=Fix9, 24=Fix 10, 25=Fix11, 26=Fix12

Angle 2 1=Radian, 2=Degree, 3=Gradian

Exponential 3 1=Normal, 2=Scientific, 3=Engineering

Format

Real or 4 1=Real, 2=Rectangular, 3=Polar

Complex

Auto or 5 1=Auto, 2=Approximate

Approx.

Vector 6 1=Rectangular, 2=Cylindrical, 3=Spherical

Format

Base 7 1=Decimal, 2=Hex, 3=Binary

58 Alphabetical Listing

getNum()
getNum(Fractionl) = value

Transforms the argument into an expression having a
reduced common denominator, and then returns its
numerator.

getType()
getType(var) = string

Returns a string that indicates the data type of
variable var.

If var has not been defined, returns the string
"NONE".

getVarinfo()
getVarinfo() = matrix or string
getVarinfo(LibNameString) = matrix or string

getVarlnfo() returns a matrix of information (variable
name, type, library accessibility, and locked/unlocked
state) for all variables and library objects defined in
the current problem.

If no variables are defined, getVarlnfo() returns the
string "NONE".

getVarlnfo(LibNameString)returns a matrix of
information for all library objects defined in library
LibNameString. LibNameString must be a string
(text enclosed in quotation marks) or a string variable.

If the library LibNameString does not exist, an error
occurs.

Catalog >

x:=5: y:=6 6
+2 7
getNum(x—)
y-3
2 2
getNum(—
7
1.1 11
getNum(—+—)
x)
Catalog >
{123}~ temp {123}
gclTypc(temp) "LIST"
3- i~ temp 3-i
gelType(temp) "EXPR"
DelVar temp Done
getType (temp) "NONE"
Catalog > e
getVarInfo() "NONE"
Define x=5 Done
Lock x Done
Define LibPriv y:{ 1,2,3} Done
Define LibPub z(x}=3-x2-x Done
getVarInfo() x "NUM" i 1
y "LIST" "LibPriv" 0
z "FUNC" "LibPub " 0
getVarInfol:tmp3)

"Error: Argument must be a string"

getVarInfo("tmp3")
[vol(‘yIZ

"NONE" "LibPub " 0]

Alphabetical Listing 59

getVarinfo()

Note the example, in which the result of getVarinfo()
is assigned to variable vs. Attempting to display row 2
orrow 3 of vs returns an “Invalid list or matrix” error
because at least one of elements in those rows
(variable b, for example) revaluates to a matrix.

This error could also occur when using Ans to
reevaluate a getVarinfo() result.

The system gives the above error because the
current version of the software does not support a
generalized matrix structure where an element of a
matrix can be either a matrix or a list.

Goto
Goto labelName
Transfers control to the label labelName.

labelName must be defined in the same function
using a Lbl instruction.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing [+] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

»Grad
Expri»Grad = expression
Converts Exprl to gradian angle measure.

Note: You caninsert this operator from the computer
keyboard by typing @>Grad.

Catalog >

a:=1 1
b1 2]
a1 3 7]
vs::get\/arlnfo() a "NUM"
b "MAT"
¢ "MAT"
vs[1] [1 "NUM"
v1,1] 1
vs[2] "Error: Invalid list or matrix"
vs[2,1] [1 2]
Catalog >
Define g():Func Done
Local temp,i
0— temp
1-i
Lbl top

temp-+i- temp
If i<10 Then
i+l-i

Goto top
EndIf

Return temp
EndFunc

Catalog >
In Degree angle mode:
(1.5)»Grad (1.66667)
In Radian angle mode:
(1.5)» Grad (95.493)

60 Alphabetical Listing

identity () Catalog >
identity (Integer) = matrix identity(4) 1000
Returns the identity matrix with a dimension of 0100
Integer. 0010

0001

Integer must be a positive integer.

If Catalog > e[
If BooleanExpr Define gx)=Func Done
Statement If x<0 Then
2
If BooleanExpr Then Return x~
Block EndIf
Endif EndFunc
gl2) 4

If BooleanExpr evaluates to true, executes the single
statement Statement or the block of statements
Block before continuing execution.

If BooleanExpr evaluates to false, continues
execution without executing the statement or block of
statements.

Block can be either a single statement or a sequence

“.n

of statements separated with the “:” character.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing (<] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

If BooleanExpr Then Define glx)=Func Done
Blockl If x<0 Then
Else Return ~x
Block?2 Else
EndIf Return x
EndIf
If BooleanExpr evaluates to true, executes Block1 EndFunc
and then skips Block2. g(lz) 12
If BooleanExpr evaluates to false, skips Block! but gl-12) 12
executes Block2.

BlockI and Block2 can be a single statement.

Alphabetical Listing 61

If

If BooleanExprl Then
Blockl

Elself BooleanExpr2 Then
Block?2

Elself BooleanExprN Then
BlockN
EndIf

Allows for branching. If BooleanExprl evaluates to
true, executes Blockl. If BooleanExprl1 evaluates to
false, evaluates BooleanExpr2, and so on.

ifFn()

fFn(BooleanExpr,Value_If true [,Value_If false
[,Value_If unknown]]) = expression, list, or matrix

Evaluates the boolean expression BooleanExpr (or
each element from BooleanExpr) and produces a
result based on the following rules:

. BooleanExpr can test a single value, a list, or a

matrix.

. If an element of BooleanExpr evaluates to true,
returns the corresponding element from Value
If true.

. If an element of BooleanExpr evaluates to

false, returns the corresponding element from
Value If false. f you omit Value If false,
returns undef.

. If an element of BooleanExpr is neither true nor
false, returns the corresponding element
Value If unknown. If you omit Value If
unknown, returns undef.

. If the second, third, or fourth argument of the
ifFn() function is a single expression, the
Boolean test is applied to every position in
BooleanExpr.

Note: If the simplified BooleanExpr statement
involves a list or matrix, all other list or matrix

Catalog >

Define g(x):Func
If x<-5 Then

Return 5
ElseIf x>-5 and x<0 Then
Return —x
Elself x=0 and x#10 Then
Return x
ElseIf x=10 Then
Return 3
EndIf
EndFunc
Done
gl4) 4
gl10) 3
Catalog >
iffn({1,2,3}<2.5,{5,6,7},{8,9,10})
{5,6,10}

Test value of 1is less than 2.5, so its corresponding

Value_If True element of 5 is copied to the result list.

Test value of 2 is less than 2.5, so its corresponding

Value_If True element of 6 is copied to the result list.

Test value of 3 is not less than 2.5, so its
corresponding Value_If False element of 10 is copied
to the result list.

itfn({1,2,3}<2.5,4,{8,9,10}) {4,410}

Value If true is a single value and corresponds to
any selected position.

itfn({1,2,3}<2.5,{5,6,7}) {5.6.undef}

Value_If false is not specified. Undef is used.

62 Alphabetical Listing

ifFn() Catalog >

arguments must have the same dimension(s), and itFn({Z gt }<2.5 {6 7} {9 10} nel.rn)
the result will have the same dimension(s). {6 "err! }

One element selected from Value_If true. One
element selected from Value_If unknown.

imag() Catalog >
imag(Valuel) = value imag(1+2'i) 2

Returns the imaginary part of the argument.

imag(List1) = list imag({’3,4*i,i}) { 0,1,1 }

Returns a list of the imaginary parts of the elements.

. N .
imag(Matrix1) = matrix imag ([1 2 D [0 0}
Returns a matrix of the imaginary parts of the i3 04 3 4
elements.
Indirection See #(), page 170.
inString() Catalog > [
inString(srcString, subString], Start]) = integer inString(" Hello there", "the ")
Returns the character position in string srcString at inString("ABCEFG" "D ") 0
which the first occurrence of string subString begins.
Start, if included, specifies the character position
within srcString where the search begins. Default = 1
(the first character of srcString).
If srcString does not contain subString or Start is >
the length of srcString, returns zero.
int() Catalog > e[
int(-2.5) -3,

int(Value) = integer

(Value) & ind[1.234 0 0.37)) [2. 0 0]

int(List1) = list
int(Matrix 1) = matrix

Alphabetical Listing 63

int()

Returns the greatest integer that is less than or equal

to the argument. This function is identical to floor().
The argument can be a real or a complex number.

For a list or matrix, returns the greatest integer of
each of the elements.

intDiv()

intDiv(Number1, Number2) = integer
intDiv(List1, List2) = list
intDiv(Matrix 1, Matrix2) = matrix

Returns the signed integer part of
(Numberl + Number?2).

For lists and matrices, returns the signed integer part

of (argument 1+ argument 2) for each element pair.

interpolate ()
interpolate(x Value, xList, yList, y PrimeList) = list
This function does the following:

GivenxList, yList=f(xList), and y PrimeList=f'(xList)
for some unknown function f, a cubic interpolant is
used to approximate the function f at x Value. Itis
assumed that xList is a list of monotonically
increasing or decreasing numbers, but this function
may return a value even when it is not. This function
walks through xList looking for an interval [xList[i],
xList[i+1]] that contains x Value. If it finds such an
interval, it returns an interpolated value for f(x Value);
otherwise, it returns undef.

xList, yList, and y PrimeList must be of equal
dimension >2 and contain expressions that simplify
to numbers.

xValue can be a number or a list of numbers.

Catalog >

Catalog >
intDiv(-7,2) 5
intDiv(4,5)
inDiv{{12,14,16},{5,4,3})

{2,35}

Catalog >

Differential equation:
y'=-3+p+6+1+5 and y(0)=5

rk=tk23(-3y+6¢+52y.{0,10} 5,1)
0. 1L 2. 3. 4. ,
5. 3.19499 5.00394 6.99957 9.00593 1C

To see the entire result, press a and then use ¢and p
to move the cursor.

Use the interpolate() function to calculate the function
values for the xvaluelist:

xvaluelist:=seq[i,i,0,10,0.5]
{0,0.51.,1.52.2.5,3.,3.54.4.5,5.,5.5,6.,6.5,
xlist::matilist(rk{l]}
{0.1.2.3.4.5.6.7.8.9.,10.}
ylist:=math listl“rk{Z])
{5.,3.19499,5.00394,6.99957,9.00593,10.9978

yprimelist:==3y+6-t+5|y=ylist and t=xlist
{’10.,1 .41503,1.98819,2.00129,1.98221,2.006

interpolate{xvalueZislxlistylisz‘yprimelisl:]
{ 5.,2.67062,3.19499,4.02782,5.00394,6.0001 1

64 Alphabetical Listing

invy2() Catalog >
invy(4rea,dy)
invChi2(4rea,df)

Computes the Inverse cumulative y2 (chi-square) probability
function specified by degree of freedom, df for a given Area
under the curve.

invF() Catalog >
invF(4rea,dfNumer,dfDenom)
invF (Area,dfNumer,dfDenom)

computes the Inverse cumulative F distribution function
specified by dfNumer and dfDenom for a given Area under the
curve.

invNorm() Catalog >
invNom(d4real,u[,c]])

Computes the inverse cumulative normal distribution function for
a given Area under the normal distribution curve specified by p

ando.
invt() Catalog >
invt(4rea,df)

Computes the inverse cumulative student-t probability function
specified by degree of freedom, dffor a given Area under the

curve.
iPart() Catalog >
iPart(Number) = integer iPan(*1.234) -1.
iPart(ListI) = list 3 {12.7.}
iPart(Matrix1) = matrix iParf [5’72'3’7'003}

Returns the integer part of the argument.

For lists and matrices, returns the integer part of each
element.

The argument can be a real or a complex number.

Alphabetical Listing 65

irr()
ir(CF0,CFList [,CFFreql) = value

Financial function that calculates internal rate of
return of an investment.

CFO0is the initial cash flow at time 0; it must be a real
number.

CFList is alist of cash flow amounts after the initial
cash flow CFO.

CFFreq is an optional list in which each element
specifies the frequency of occurrence for a grouped
(consecutive) cash flow amount, which is the
corresponding element of CFList. The default is 1; if
you enter values, they must be positive integers <
10,000.

Note: See also mirr(), page 84.

isPrime()
isPrime(Number) = Boolean constant expression

Returns true or false to indicate if number is a whole
number > 2 that is evenly divisible only by itself and 1.

If Number exceeds about 306 digits and has no
factors <1021, isPrime(Number) displays an error
message.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing [+] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

isVoid()

isVoid(Var) = Boolean constant expression
isVoid(Expr) = Boolean constant expression
isVoid(List) = list of Boolean constant expressions

Returns true or false to indicate if the argument is a
void data type.

Coraaora inf tion ooaaoid ol X3 saeanaaa 177
T gt

Catalog >

TistI:={ 6000,-8000,2000,-3000 }
{6000,-8000,2000,-3000 }

list2:={2,2,2,1} (2221}
irr(5000, st 1, list2) 64484

Catalog >
isPrime(S) p—-
isPrime(6) lse

Function to find the next prime after a specified
number:

Define nexlprim(n):Func Done
Loop
nt+l-n
It isPrime(n)

Return n
EndLoop
EndFunc
nexlprim(7) 11
Catalog > Elﬂ
a=_ —
isVoid(a) true
isVoid({ 1,.3 }) { false,true, false }

66 Alphabetical Listing

Lbl
Lbl labelName

Defines a label with the name labelName within a
function.

You can use a Goto labe/Name instruction to transfer
control to the instruction immediately following the
label.

labelName must meet the same naming
requirements as a variable name.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing (<] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

lem()

lem(Number1, Number2) = expression

lem(List1, List2) = list

lem(Matrix 1, Matrix2) = matrix

Returns the least common multiple of the two
arguments. The lem of two fractions is the lem of their
numerators divided by the gcd of their denominators.
The lem of fractional floating-point numbers is their
product.

For two lists or matrices, returns the least common
multiples of the corresponding elements.

left()
left(sourceStringl, Num]) = string

Returns the leftmost Num characters contained in
character string sourceString.

If you omit Num, returns all of sourceString.

left(List1[, Num]) = list

Catalog >
Define g():Func Done
Local temp,i
0 temp
1-i
Lbl top
temp-+i— temp
If i<10 Then
i+1-i
Goto top
EndIf
Return temp
EndFunc
8l) 55
Catalog >
1em(6,9) 18

lem| i,’14,16 s 1,7,5 £,14,80
3 15 3

Catalog >
left{"Hello",2) "He"
lefi{{1,3,2,4},3) {132}

Alphabetical Listing 67

left() Catalog >

Returns the leftmost Num elements contained in
Listl.

If you omit Num, returns all of List].
left(Comparison) = expression

Returns the left-hand side of an equation or inequality.

|ibsh0ncut() Cata|og > H.E

libShortcut(LibName String, ShortcutNameString This example assumes a properly stored and

[LibPrivFlag]) = Jist of variables refreshed library document named linalg2 that
contains objects defined as clearmat, gauss!, and

Creates a variable group in the current problem that gauss2.

contains references to all the objects in the specified
library document /ibNameString. Also adds the group getVarlnfo("linalg2"}
members to the Variables menu. You can then refer to clearmat "FUNC" "LibPub "

each object using its ShortcutNameString. gaussl "PRGM" "LibPriv "
gauss2 "FUNC" "LibPub "

lib Shoncut("linalg2"," la”)
{ la.clearmat,la. gaussZ}
lib Shoncut("linalg2","la", 1)
{ la.clearmat,la.gaussl,la. gaussZ}

Set LibPrivFlag=0 to exclude private library objects
(default)
Set LibPrivFlag=1 toinclude private library objects

To copy a variable group, see CopyVar on page 27.
To delete a variable group, see DelVar on page 40.

LinRegBx Catalog > L2
LinRegBx X, Y[,[Freq][, Category,Include]]

Computes the linear regression y = a+bex on lists Xand Y with
frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.
Xand Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers > 0.

Category is a list of numeric or string category codes for the
corresponding Xand Y data.

Include is alist of one or more of the category codes. Only those

68 Alphabetical Listing

LinRegBx Catalog >

data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output

. Description
variable Pt

stat.RegEqgn Regression Equation: a+bex

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,

Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg | List of frequencies corresponding to stat. XReg and stat. YReg

LinRegMx Catalog >
LinRegMx X, Y1,[Freq][, Category,Include]]

Computes the linear regression y = mex+b on lists X'and Y with
frequency Freq. Asummary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.
Xand Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers >0.

Category is a list of numeric or string category codes for the
corresponding Xand Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
-Empty (Void) Elements " page 177

Alphabetical Listing 69

Output

variable Description

stat.RegEqn Regression Equation: y = mex+b

stat.m, stat.b Regression coefficients

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,

Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg | List of frequencies corresponding to stat. XReg and stat. YReg

LinRegtIntervals Catalog >
LinRegtIntervals X, Y[,F[,0[, CLeVv]]]

For Slope. Computes a level C confidence interval for the slope.

LinRegtIntervals X, Y[,F,1,Xval[,CLeV]]]

For Response. Computes a predicted y-value, a level C
prediction interval for a single observation, and a level C
confidence interval for the mean response.

A summary of results is stored in the stat. results variable. (See
page 131.)

All the lists must have equal dimension.
Xand Y are lists of independent and dependent variables.

Fis an optional list of frequency values. Each element in ¥
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers >0.

Forinformation on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description
stat.RegEgn Regression Equation: a+bex
stat.a, stat.b Regression coefficients

70 Alphabetical Listing

Output variable Description
stat.df Degrees of freedom
stat.r2 Coefficient of determination
stat.r Correlation coefficient
stat.Resid Residuals from the regression

For Slope type only
Output variable Description
[stat.CLower, stat.CUpper] Confidence interval for the slope
stat ME Confidence interval margin of error
stat.SESlope Standard error of slope
stat.s Standard error about the line

For Response type only
Output variable Description
[stat.CLower, stat.CUpper] Confidence interval for the mean response
stat ME Confidence interval margin of error
stat.SE Standard error of mean response
[stat.LowerPred, Prediction interval for a single observation
stat.UpperPred)]

stat. MEPred Prediction interval margin of error
stat.SEPred Standard error for prediction

stat.§ a+ beXVal
LinRegtTest

LinRegtTest X, Y[, Freq[, Hypoth]]

Computes a linear regression on the Xand Y lists and a ¢ test on
the value of slope 3 and the correlation coefficient p for the
equation y=a+pXx. It tests the null hypothesis HO:B=O
(equivalently, p=0) against one of three alternative hypotheses.

All the lists must have equal dimension.
Xand Y are lists of independent and dependent variables.

Freq s an optional list of frequency values. Each element in Freq

Alphabetical Listing 71

LinRegtTest

specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers >0.

Hypoth is an optional value specifying one of three alternative
hypotheses against which the null hypothesis (HO:B=p=0) will be
tested.

ForH_: p#0 and p0 (default), set Hypoth=0

ForH_: B<0and p<0, set Hypoth<0

ForH,: p>0and p>0, set Hypoth>0

A summary of results is stored in the stat.results variable. (See
page 131.)

Forinformation on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Catalog >

Output variable Description

stat.RegEqgn Regression equation: a + bx
stat.t t-Statistic for significance test
stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom

stat.a, stat.b Regression coefficients

stat.s Standard error about the line
stat.SESlope Standard error of slope

stat.r2 Coefficient of determination
stat.r Correlation coefficient
stat.Resid Residuals from the regression

72 Alphabetical Listing

linSolve()

linSolve(SystemOfLinearEgns, Varl, Var2, ...) =
list

linSolve(LinearEqnl and LinearEqn2 and ..., Varl,
Var2,...)= list

linSolve({LinearEqnl, LinearEqn2, ...}, Varl, Var2,
... = list

linSolve(SystemOfLinearEqgns, {Varl, Var2,...}) =
list

linSolve(LinearEqnl and LinearEqn2 and ...,
Varl, Var2,...}) = list

linSolve({LinearEqnl, LinearEgn2, ...}, {Varl, Var2,
L)) = st

Returns a list of solutions for the variables Var1,
Var2, ...

The first argument must evaluate to a system of
linear equations or a single linear equation. Otherwise,
an argument error occurs.

Forexample, evaluating1inSolve (x=1 and
x=2,x) produces an “Argument Error” result.

AList()
AList(List1) = list

Note: You can insert this function from the keyboard
by typingdeltaList (...).

Returns a list containing the differences between
consecutive elements in List]. Each element of List]
is subtracted from the next element of List/. The
resulting list is always one element shorter than the
original List].

Catalog >

linSolve 2-X+4Iy=3j{xy}) ﬂji
5ex=3=7 26 26
. 2x=3 31
linSolve REAY ==
”5'I—3'y=7 { *}}) {2 6]
linSolve(appié+4.p€ar=23J{GPPJE,pear‘})
Srapple-pear=17
1314
3’3
pear
led+ =14
linsolve appie J{appie,pear‘}
-appletpear=6
36 114
13' 13
Catalog >

AList{{20,30,45,70})

{10,15,25}

Alphabetical Listing 73

list» mat()
list»mat(List [, elementsPerRow]) = matrix

Returns a matrix filled row-by-row with the elements
from List.

elementsPerRow, if included, specifies the number of
elements per row. Default is the number of elements
in List (one row).

If List does not fill the resulting matrix, zeros are
added.

Note: You caninsert this function from the computer
keyboard by typing 1list@>mat(...).

In()

In(Valuel) = value
In(List1) = list

Returns the natural logarithm of the argument.

For allist, returns the natural logarithms of the
elements.

In(squareMatrix 1) = squareMatrix

Returns the matrix natural logarithm of
squareMatrix 1. This is not the same as calculating
the natural logarithm of each element. For information
about the calculation method, refer to cos() on.

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

Catalog >

[1 2 3]
12
34
50

listbmat{{1,2,3})
listbmat({1,2,3,4,5},2)

(e][] keys

In(2.) 0.693147

If complex format mode is Real:

n({-3,1.2,5})
"Error: Non—real calculation"

If complex format mode is Rectangular:

n{{-3,1.2,5})
{1.09861+3.14159-4,0.182322,1.60944 }

In Radian angle mode and Rectangular complex
format:

153
Inify 2 1

6 2 1

1.83145+1.73485-i 0.009193—1.49086
0.448761-0.725533+i 1.06491+0.623491*
0.266891-2.08316+i 1.12436+1.79018-

To see the entire result, press .a and then use ¢ and p
to move the cursor.

74 Alphabetical Listing

LnReg
LnReg X, Y[, [Freq] [, Category, Include]]

Computes the logarithmic regression y = a+beIn(x) on lists X and
Y with frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.
Xand Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers >0.

Category is a list of numeric or string category codes for the
corresponding X'and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

8:{:2::6 Description

stat.RegEqgn Regression equation: a+bsIn(x)

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformed data
stat.r Correlation coefficient for transformed data (In(x), y)
stat.Resid Residuals associated with the logarithmic model

stat.ResidTrans | Residuals associated with linear fit of transformed data

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,

Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,

Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat. XReg and stat. YReg

Alphabetical Listing

75

Local
Local Varl|, Var2][, Var3] ...

Declares the specified vars as local variables. Those
variables exist only during evaluation of a function and
are deleted when the function finishes execution.

Note: Local variables save memory because they
only exist temporarily. Also, they do not disturb any
existing global variable values. Local variables must
be used for For loops and for temporarily saving
values in a multi-line function since modifications on
global variables are not allowed in a function.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing [] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

Lock

LockVarll, Var2 [, Var3] ...
LockVar.

Locks the specified variables or variable group.
Locked variables cannot be modified or deleted.

You cannot lock or unlock the system variable Ans,
and you cannot lock the system variable groups stat.
ortvm.

Note: The Lock command clears the Undo/Redo
history when applied to unlocked variables.

See unLock, page 147, and getLocklInfo(), page 57.

log()
log(Valuel[,Value2]) = value

log(List1[,Value2]) = list

Returns the base-Value?2 logarithm of the first
argument.

Note: See also Log template, page 6.

Catalog >

Define roIlcount(): Func

Local i

1-1

Loop

If randInl(I,G}Zrandlnt(l,ﬁ)
Goto end

i+1-i
EndLoop
Lbl end
Return i
EndFunc
Done
rollcount() 16
roIlcount() 3
Catalog >
a:=65 65
Lock a Done
getLockInfo(a) 1
a:=75 "Error: Variable is locked."
DelVar a "Error: Variable is locked."
Unlock a Done
a:=75 75
DelVar a Done
[en] (] keys
log (2. 0.30103
10
log (2.) 0.5
4
0.63093

log 3(10)*10g 3(5)

76 Alphabetical Listing

log()

For a list, returns the base-Value?2 logarithm of the
elements.

If the second argument is omitted, 10 is used as the
base.

log(squareMatrix 1], Value]) = squareMatrix

Returns the matrix base-Value logarithm of
squareMatrix 1. This is not the same as calculating
the base-Value logarithm of each element. For
information about the calculation method, refer to cos

0-

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

If the base argument is omitted, 10 is used as base.

Logistic

Logistic X, Y[, [Freq] [, Category, Include]]

() () keys

If complex format mode is Real:

log 10({ 3,1.2,5})

"Error: Non—real calculation"

If complex format mode is Rectangular:

log 10({73,1.2,5})

{0.477121+1.36438~i,0.079181,OA69897}

In Radian angle mode and Rectangular complex
format:

3
1

[N RN

. 1
Og10 4

6 21
0.795387+0.753438-i 0.003993—0.6474"
0.194895-0.315095+i 0.462485+0.2707"
-0.115909-0.904706i 0.488304+0.7774¢

To see the entire result, press a and then use ¢and p
to move the cursor.

Catalog > [

Computes the logistic regression y = (c/(1+ase®X)) on lists Xand
Y with frequency Freq. A summary of results is stored in the

stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

Xand Y are lists of independent and dependent variables.

Freq s an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers > 0.

Category is a list of numeric or string category codes for the
corresponding X'and Y data.

Include is alist of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

Alphabetical Listing

77

Logistic Catalog >

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output

. Description
variable Pt

stat.RegEqn Regression equation: ¢/(1+a-eX)

stat.a, stat.b, Regression coefficients

stat.c

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,

Category List, and Include Categories

stat.FreqReg | List of frequencies corresponding to stat. XReg and stat. YReg

LogisticD Catalog >
LogisticD X, Y [, [lterations] , [Freq] [, Category, Include]]

Computes the logistic regression y = (c/(1+ase®*)+d) on lists X
and Y with frequency Fregq, using a specified number of
Iterations. A summary of results is stored in the stat.results
variable. (See page 131.)

All the lists must have equal dimension except for Include.
Xand Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers >0.

Category is a list of numeric or string category codes for the
corresponding X'and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

78 Alphabetical Listing

Output
. Description
variable ot
stat.RegEqn Regression equation: c/(1+ase%)+d)
stat.a, stat.b, Regression coefficients
stat.c, stat.d
stat.Resid Residuals from the regression
stat. XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories
stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories
stat.FreqReg List of frequencies corresponding to stat.XReg and stat. YReg
Loop Catalog >
Loop Define rollcount|)=Func
Block Local i
EndLoop 1-1
Loop

Repeatedly executes the statements in Block. Note
that the loop will be executed endlessly, unless a
Goto or Exit instruction is executed within Block.

Block is a sequence of statements separated with the

“.n

:” character.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

If randInt(1,6)=randIni(1,6)
Goto end

i+t1-i

EndLoop

Lbl end

Return i

EndFunc

Done

rollcount() 16
roIlcountI:) 3

Alphabetical Listing 79

LU
LU Matrix, IMatrix, uMatrix, pMatrix[, Tol]

Calculates the Doolittle LU (lower-upper)
decomposition of a real or complex matrix. The lower
triangular matrix is stored in /[Matrix, the upper
triangular matrix in uMatrix, and the permutation
matrix (which describes the row swaps done during
the calculation) in pMatrix.
IMatrix-uMatrix = pMatrix-matrix
Optionally, any matrix element is treated as zero if its
absolute value is less than Tol. This tolerance is used
only if the matrix has floating-point entries and does
not contain any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.
. If you use [etr] [enter] or set the Auto or
Approximate mode to Approximate,

computations are done using floating-point
arithmetic.

. If Tol is omitted or not used, the default
tolerance is calculated as:
5E 14*max(dim(Matrix))srowNorm(Matrix)

The LU factorization algorithm uses partial pivoting
with row interchanges.

M

mat» list()
mat»list(Matrix) = list

Returns a list filled with the elements in Matrix. The
elements are copied from Matrix row by row.

Note: You caninsert this function from the computer
keyboard by typingmat@>list(...).

max()

max(Valuel, Value2) = expression
max(List1, List2) = list

Catalog >

6 12 18 6 12 18
5 14 31|>m 5 14 31
3 8 18 3 8 18
LU m1,lower,upper,perm Done
lower 1 00
3 1 0
6
11
2 2
upper 6 12 18
0 4 16
0 0 1
perm 100
010
001
Catalog>
mattlist[1 2 3]) {123}
12 3|,my1 123
4 56 456
mat list{m 1) {1,23456}
Catalog>
max(2.3,1.4) 2.3

max({{1,2},{-43})

{13}

80 Alphabetical Listing

max() Catalog >
max(Matrix1, Matrix2) = matrix

Returns the maximum of the two arguments. If the
arguments are two lists or matrices, returns a list or
matrix containing the maximum value of each pair of
corresponding elements.

max(List) = expression max({O,l;7,1.3,05}) 13

Returns the maximum element in /isz.

max(Matrix1) = matrix max([1 3 7 D [1 0 7]

Returns a row vector containing the maximum 4 0 03

element of each columnin Matrix1.

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

Note: See also min().

mean() Catalog >

mean(List|, freqList]) = expression mean({OAZ 0.1.-0.3 0_4}) 0.

[\S]
o)}

Returns the mean of the elements in List. mean({ 1,2,3},{3,2,1 })

W |

Each frreqList element counts the number of
consecutive occurrences of the corresponding
element in List.

mean(MatrixI[, freqMatrix]) = matrix In Rectangular vector format:

Returns a row vector of the means of all the columns 02 0 [,0.133333 0.833333]
in Matrix1. mean|| .} 3

Each freqMatrix element counts the number of
consecutive occurrences of the corresponding 1 0 }
5
4
6

element in Matrix1. B}
mean -1 3

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

mean

[47 11

Alphabetical Listing 81

median() Catalog >

median(List[, freqList]) = expression rnedian({0.2,0,1,*0.3,0.4}) 0.2

Returns the median of the elements in List.

Each freqList element counts the number of
consecutive occurrences of the corresponding
element in List.

median(Matrix I[, fregMatrix]) = matrix 02 0 [0.4 ,0‘3]
median(| | o3

0.4 -0.5

Returns a row vector containing the medians of the
columns in Matrix1.

Each freqMatrix element counts the number of
consecutive occurrences of the corresponding
element in Matrix1.

Notes:
. All entries in the list or matrix must simplify to
numbers.

. Empty (void) elements in the list or matrix are
ignored. For more information on empty
elements, see page 177.

MedMed Catalog > &3
MedMed X, Y [, Freq] [, Category, Include]]

Computes the median-median line y = (mex+b) on lists Xand Y
with frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.
Xand Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freg
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers > 0.

Category is a list of numeric or string category codes for the
corresponding Xand Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

82 Alphabetical Listing

Qi oot

stat.RegEqn Median-median line equation: m+x+b

stat.m, statb | Model coefficients

stat.Resid Residuals from the median-median line

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg | List of frequencies corresponding to stat. XReg and stat.YReg

mid() Catalog >

mid(sourceString, Start[, Count]) = string mid| "Hello there”,2) "ello there"

Returns Count characters from character string
sourceString, beginning with character number Start.

If Count is omitted or is greater than the dimension of
sourceString, returns all characters from
sourceString, beginning with character number Start.

Count must be > 0. If Count =0, returns an empty
string.
mid(sourceList, Start [, Count]) = list

Returns Count elements from sourceList, beginning
with element number Start.

If Count is omitted or is greater than the dimension of
sourcelList, returns all elements from sourcelList,
beginning with element number Start.

Count must be >0. If Count =0, returns an empty list.

mid(sourceStringList, Start][, Count]) = list

Returns Count strings from the list of strings
sourceStringList, beginning with element number
Start.

mid| "Hello there" ,7,3) "the"

mid| "Hello there", 1,5) "Hello"

"Hello there", 1,0) i

mid

mid{{"A","B","C","D" }.2.2]
{rwrrer)

Alphabetical Listing 83

min()

min(Valuel, Value2) = expression
min(Listl, List2) = list
min(Matrix 1, Matrix2) = matrix

Returns the minimum of the two arguments. If the
arguments are two lists or matrices, returns a list or
matrix containing the minimum value of each pair of
corresponding elements.

min(List) = expression

Returns the minimum element of Lisz.
min(Matrix 1) = matrix

Returns a row vector containing the minimum

element of each columnin Matrix1.

Note: See also max().

mirr()

mirr(financeRate,reinvestRate, CF0,CFList
[,CFFreq))

Financial function that returns the modified internal
rate of return of an investment.

financeRate is the interest rate that you pay on the
cash flow amounts.

reinvestRate is the interest rate at which the cash
flows are reinvested.

CFO0is the initial cash flow at time 0; it must be a real
number.

CFList is alist of cash flow amounts after the initial
cash flow CFO.

CFFreq s an optional list in which each element
specifies the frequency of occurrence for a grouped
(consecutive) cash flow amount, which is the
corresponding element of CFList. The default is 1; if
you enter values, they must be positive integers <
10,000.

Note: See also irr(), page 66.

Catalog >

min(2.3,1.4) 1.4

min{{1,2},{-43}) {42}

min({0,1,7,1.3,0.5}) -7
min([l 307 D [4 3 03]

4 0 03
Catalog>

Tist1:={ 6000,-8000,2000,-3000 }
{6000,-8000,2000,-3000 }

list2:={2,2,2,1} {2221}

mirr{4.65,12,5000,list1,list2) 13.41608607

84 Alphabetical Listing

mod()

mod(Valuel, Value2) = expression
mod(List1, List2) = list
mod(Matrix 1, Matrix2) = matrix

Returns the first argument modulo the second
argument as defined by the identities:

mod(x,0) =x
mod(x,y) =x —y floor(x/y)

When the second argument is non-zero, the result is
periodic in that argument. The result is either zero or
has the same sign as the second argument.

If the arguments are two lists or two matrices, returns
a list or matrix containing the modulo of each pair of
corresponding elements.

Note: See also remain(), page 111

mRow()
mRow(Value, Matrix 1, Index) = matrix

Returns a copy of Matrix I with each element in row
Index of Matrix 1 multiplied by Value.

mRowAdd()

mRowAdd(Value, Matrix1, Index 1, Index2) =
matrix

Returns a copy of Matrix I with each element in row
Index?2 of Matrix I replaced with:

Value « row Index 1 + row Index?2

MultReg
MultReg Y, X1[,X2[,X3,..[,X10]]]

Catalog >

mod(7,0) 7
mod(7,3)

mod(-7,3) 2
mod(7,-3) 2
mod(-7,-3) -1
mod({12,14,16},{9,7,5}) {3,074}
Catalog >

mRow,| i, 12 2 12
313 4 42

3
Catalog > HE
mRowAdd(s,[l 2],1,2] [1 2}
34 0 -2
Catalog >

Calculates multiple linear regression of list Y on lists X7, X2, ...,
X10. Asummary of results is stored in the stat.results variable.

(See page 131.)

Alphabetical Listing 85

MultReg
All the lists must have equal dimension.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.RegEqn Regression Equation: bO+b1ex1+b2+x2+ ...

stat.b0, stat.b1, ... Regression coefficients

stat.R? Coefficient of multiple determination

stat.gList glist= bO+blex1+ ...

stat.Resid Residuals from the regression

MultRegintervals Catalog >

MultRegintervals Y, XI[, X2[, X3,..[, XI0]]], XValList[, CLevel]

Computes a predicted y-value, a level C prediction interval for a
single observation, and a level C confidence interval for the mean
response.

A summary of results is stored in the stat.results variable. (See
page 131.)

All the lists must have equal dimension.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.RegEqgn Regression Equation: b0+b1ex1+b2:x2+ ...

stat.§ A point estimate: § = b0 + b1 < xI + ... for XValList
stat.dfError Error degrees of freedom

stat.CLower, stat.CUpper Confidence interval for a mean response

stat ME Confidence interval margin of error

stat.SE Standard error of mean response
stat.LowerPred, Prediction interval for a single observation
stat.UpperrPred

stat. MEPred Prediction interval margin of error

86 Alphabetical Listing

Output variable Description

stat.SEPred Standard error for prediction

stat.bList List of regression coefficients, {b0,b1,b2,...}
stat.Resid Residuals from the regression
MultRegTests

MultRegTests Y, X[, X2[, X3,..[, X10]]]

Multiple linear regression test computes a multiple linear
regression on the given data and provides the global F'test
statistic and ¢ test statistics for the coefficients.

A summary of results is stored in the stat. results variable. (See

page 131.)

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Outputs
Output variable | Description
stat.RegEqgn Regression Equation: b0+b1ex1+b2ex2+ ...
stat.F Global F test statistic
stat.PVal P-value associated with global F statistic
stat.R2 Coefficient of multiple determination
stat. AdjR?2 Adjusted coefficient of multiple determination
stat.s Standard deviation of the error
stat. DW Durbin-Watson statistic; used to determine whether first-order auto correlation is present in the
model
stat.dfReg Regression degrees of freedom
stat.SSReg Regression sum of squares
stat. MSReg Regression mean square
stat.dfError Error degrees of freedom
stat.SSError Error sum of squares
stat.MSError Error mean square
stat.bList {b0,b1,...} List of coefficients

Alphabetical Listing

87

Output variable | Description

stat.tList List of t statistics, one for each coefficient in the bList

stat.PList List P-values for each t statistic

stat.SEList List of standard errors for coefficients in bList

stat.gList glist= bO+blex1+ ...

stat.Resid Residuals from the regression

stat.sResid Standardized residuals; obtained by dividing a residual by its standard deviation

stat.CookDist Cook’s distance; measure of the influence of an observation based on the residual and leverage
stat.Leverage Measure of how far the values of the independent variable are from their mean values

N

nand

BooleanExpr1 nand BooleanExpr2 returns Boolean
expression

BooleanList1 nand BooleanList2 returns Boolean
list

BooleanMatrix 1 nand BooleanMatrix2 returns
Boolean matrix

Returns the negation of a logical and operation on the
two arguments. Returns true, false, or a simplified
form of the equation.

For lists and matrices, returns comparisons element
by element.

[1])[=] keys

Integer] nand Integer2 = integer 3 and 4

0

Compares two real integers bit-by-bit using a nand 3 pand 4

-1

operation. Internally, both integers are converted to {1 5 3} and {3 5 1}

{121}

signed, 64-bit binary numbers. When corresponding

bits are compared, the result is 1 if both bits are 1; { 11213} nand {3J 21 }

{-2-3-2}

otherwise, the result is 0. The returned value
represents the bit results, and is displayed according
to the Base mode.

You can enter the integers in any number base. Fora
binary or hexadecimal entry, you must use the Ob or

Oh prefix, respectively. Without a prefix, integers are
treated as decimal (base 10).

88 Alphabetical Listing

nCr()

nCr(Valuel, Value2) = expression

Forinteger Value I and Value2 with Value I > Value2>
0, nCr() is the number of combinations of Value 1
things taken Value?2 at atime. (This is also known as

a binomial coefficient.)
nCr(Value, 0) = 1

nCr(Value, neglnteger) = 0

nCr(Value, posinteger) = Values(Value—1) ...
(Value—posinteger+1)l posinteger!

nCr(Value, nonlnteger) = expression! |
((Value—noninteger)l*noninteger!)

nCr(List1, List2) = list

Returns a list of combinations based on the
corresponding element pairs in the two lists. The
arguments must be the same size list.

nCr(Matrix 1, Matrix2) = matrix

Returns a matrix of combinations based on the
corresponding element pairs in the two matrices. The
arguments must be the same size matrix.

nDerivative()

nDerivative(Expr 1, Var=Value[,Order]) = value
nDerivative(Expr 1, Var[,Order]) |Var=Value = value

Returns the numerical derivative calculated using
auto differentiation methods.

When Value is specified, it overrides any prior
variable assignment or any current “|” substitution for

the variable.

If the variable Var does not contain a numeric value,

you must provide Value.

Order of the derivative must be 1 or 2.

Catalog >

nCrlz,3):=5 10
nCrlz,3)|=6 20
ncr{{5,43},{2,4,2}) {10,1,3}
ncrﬂ6 5Hz 2 115 10J
4 3][2 2 6 3
Catalog > [

nDerivative(‘xLx:l) 1
nDerivative(‘ILINI:O undef
nDerivative(Jx-1 Jx)|x:1 undef

Alphabetical Listing 89

nDerivative()

Note: The nDerivative() algorithm has a limitiation: it
works recursively through the unsimplified
expression, computing the numeric value of the first
derivative (and second, if applicable) and the
evaluation of each subexpression, which may lead to
an unexpected result.

Consider the example on the right. The first derivative
of x+(x"2+x)"(1/3) at x=0 is equal to 0. However,
because the first derivative of the subexpression
(x"2+x)*(1/3) is undefined at x=0, and this value is
used to calculate the derivative of the total
expression, nDerivative() reports the result as
undefined and displays a warning message.

If you encounter this limitation, verify the solution
graphically. You can also try using centralDiff().

newlList()
newlList(numElements) = list

Returns a list with a dimension of numFElements. Each
element is zero.

newMat()
newMat(numRows, numColumns) = matrix

Returns a matrix of zeros with the dimension
numRows by numColumns.

nfMax()

nfMax(Expr, Var) = value

nfMax(Expr, Var, lowBound) = value
nfMax(Expr, Var, lowBound, upBound) = value
nfMax(Expr, Var)| lowBound<Var<upBound =
value

Returns a candidate numerical value of variable Var
where the local maximum of Expr occurs.

If you supply lowBound and upBound, the function
looks in the closed interval [lowBound,upBound)] for

Catalog >

1 undef
e 1)’
nDerivativele x+x/ ,x,1]x=0
1
3
centralDif x-(x2+x) x)|x=0
0.000033
Catalog >
newList(4) {0,000}
Catalog >
newMat(2,3) 000
000
Catalog >
nﬂ\dax(-x2—2-x—1,x) L
5.

nﬂ\/Iax(O.S- x3—x—2,x;5,5)

=thre-tocatrrrextrrrom
90 Alphabetical Listing

nfMin()

nfMin(Expr, Var) = value

nfMin(Expr, Var, lowBound) = value

nfMin(Expr, Var, lowBound, upBound) = value
nfMin(Expr, Var) | lowBound<Var<upBound = value

Returns a candidate numerical value of variable Var
where the local minimum of Expr occurs.

If you supply lowBound and upBound, the function
looks in the closed interval [lowBound,upBound] for
the local minimum.

nint()
nint(Exprl, Var, Lower, Upper) = expression

If the integrand Expr1 contains no variable other than
Var, and if Lower and Upper are constants, positive
o0, or negative «, then nint() returns an approximation
of [(Exprl, Var, Lower, Upper). This approximation
is a weighted average of some sample values of the
integrand in the interval Lower<Var<Upper.

The goal is six significant digits. The adaptive
algorithm terminates when it seems likely that the
goal has been achieved, or when it seems unlikely
that additional samples will yield a worthwhile
improvement.

Awarning is displayed (“Questionable accuracy”)
when it seems that the goal has not been achieved.

Nest nint() to do multiple numeric integration.
Integration limits can depend on integration variables
outside them.

nom()
nom(effectiveRate, CpY) = value

Financial function that converts the annual effective
interest rate effectiveRate to a nominal rate, given
CpY as the number of compounding periods per year.

effectiveRate must be a real number, and CpY must
be a real number > 0.

~Note: Seealsoeff() page 44

Catalog >

nﬂ\/Iin(x2+2- x+5,x) -
nﬂvﬁn(o.S-x3 —x—2,x,-5,5) >
Catalog >
(2] 1.49365
nlntie © ,x,71,1
nInt(cos(x),x,’n,n+1.E"12) -1.04144€e°12
oY 3.30423
nlnt{nInt| —,y, x,x|,x,0,1
x27y2
Catalog >
nom(5.90398,12) 5.75

Alphabetical Listing 91

nor [en](=] keys

BooleanExpr1 nor BooleanExpr2 returns Boolean
expression

BooleanList] nor BooleanList2 returns Boolean list
BooleanMatrix 1 nor BooleanMatrix2 returns
Boolean matrix

Returns the negation of a logical or operation on the
two arguments. Returns true, false, or a simplified
form of the equation.

For lists and matrices, returns comparisons element

by element.
Integerl nor Integer2 = integer 3ord 7
Compares two real integers bit-by-bit using a nor 3nor 4 -8

operation. Internally, both integers are converted to
signed, 64-bit binary numbers. When corresponding
bits are compared, the result is 1 if both bits are 1; { 1’213} nor {31 31 } {74173174}
otherwise, the result is 0. The returned value

represents the bit results, and is displayed according

to the Base mode.

{123} er {321} {323}

You can enter the integers in any number base. For a
binary or hexadecimal entry, you must use the Ob or
Oh prefix, respectively. Without a prefix, integers are
treated as decimal (base 10).

norm() Catalog >
norm(Matrix) = expression norm([l ZD 5 47723
norm(Vector) = expression 3 4
Returns the Frobenius norm. no}m([l 2]) 223607
nom(1) 2.23607
2
normCdf() Catalog > 12

normCdf(lowBound,upBound],u[,c]]) = number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

Computes the normal distribution probability between lowBound
and upBound for the specified p (default=0) and o (default=1).

For P(X <upBound), set lowBound = 9E999.

92 Alphabetical Listing

normPdf()

Catalog >

normPdf(XVal[,ul,0]]) = number if XVal is a number, list if XVal

is alist

Computes the probability density function for the normal

distribution at a specified XVal value for the specified p and c.

not
not BooleanExpr = Boolean expression

Returns true, false, or a simplified form of the
argument.

not Integerl = integer

Returns the one’s complement of a real integer.
Internally, Integerl is converted to a signed, 64-bit
binary number. The value of each bit is flipped (0
becomes 1, and vice versa) for the one’s
complement. Results are displayed according to the
Base mode.

You can enter the integer in any number base. For a
binary or hexadecimal entry, you must use the Ob or
Oh prefix, respectively. Without a prefix, the integer is
treated as decimal (base 10).

If you enter a decimal integer that is too large for a
signed, 64-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range. For more information, see
»Base2, page 20.

nPr()
nPr(Valuel, Value2) = expression

Forinteger Valuel and Value2 with Valuel > Value2 >
0, nPr() is the number of permutations of Value 1
things taken Value?2 at atime.

nPr(Value, 0) = 1

nPr(Value, neginteger) = 1/ ((Value+1)«(Value+2)...
(Value—neginteger))

Catalog > Elﬂ

not (223) true

not OhBO»Basel6 OhFFFFFFFFFFFFFF4F

not not 2 2

In Hex base mode:

Important: Zero, not the letter O.

not Oh7AC36 OhFFFFFFFFFFE853C9
In Bin base mode:
0b100101»Basel0 37

not 0b100101
0b111111111111111111111111111111111»

not 0b100101»Basel0 -38

To see the entire result, press a and then use ¢ and p
to move the cursor.

Note: A binary entry can have up to 64 digits (not
counting the Ob prefix). A hexadecimal entry can have
up to 16 digits.

Catalog>

nPr{z,3)]z=5 60
nPrlz,3)|=6 120
nPr{{54,3},{2,42}) {20,246}
npl.(a 5,[2 2D [30 20}
4 32 2 12 6

Alphabetical Listing 93

nPr()

nPr(Value, posinteger) = Value«(Value—1)...
(Value—posinteger+1)

nPr(Value, nonlnteger) = Value!l
(Value—noninteger)!

nPr(Listl, List2) = list

Returns a list of permutations based on the
corresponding element pairs in the two lists. The
arguments must be the same size list.

nPr(Matrix1, Matrix2) = matrix

Returns a matrix of permutations based on the
corresponding element pairs in the two matrices. The
arguments must be the same size matrix.

npv()
npv(lnterestRate, CFO,CFList[,CFFreq])

Financial function that calculates net present value;
the sum of the present values for the cash inflows and
outflows. A positive result for npv indicates a
profitable investment.

InterestRate is the rate by which to discount the cash
flows (the cost of money) over one period.

CFO0is the initial cash flow at time 0; it must be a real
number.

CFList is alist of cash flow amounts after the initial
cash flow CF0.

CFFreq is alist in which each element specifies the
frequency of occurrence for a grouped (consecutive)
cash flow amount, which is the corresponding
element of CFList. The default is 1; if you enter
values, they must be positive integers < 10,000.

Catalog >

nPr{{5.4,3}.{2.42}) {20,246}
LY B
Catalog >

Tist1:={ 6000,-8000,2000,-3000 }
{6000,-8000,2000,-3000 }

list2:={2,2,2,1} {2221}

npv(10,5000,ist1,list2) 4769.91

94 Alphabetical Listing

nSolve() Catalog >

nSolve(Equation, Var[=Guess]) = number or error_ 3.84429

nSolve(x2+5-X725:9,x)

string
nSolve(x2:4,x:’ 1) 2

nSolve(Equation, Var[=Guess],lowBound) = number 3 5
or error_string nSolve(x :4,x:1) .

nSolve(Equation, Var[=Guess],lowBound,upBound) Note: If there are multiple solutions, you can use a
= number or error string guess to help find a particular solution.

nSolve(Equation, Var[=Guess]) |
lowBound<Var<upBound = number or error_string

Iteratively searches for one approximate real numeric
solution to Equation for its one variable. Specify the
variable as:

variable
_or-
variable = real number

For example, x is valid and so is x=3.

nSolve() attempts to determine either one point where
the residual is zero or two relatively close points
where the residual has opposite signs and the
magnitude of the residual is not excessive. If it cannot
achieve this using a modest number of sample points, 0.006886

nSolve(xz+5~x725:9,x)|x<0 -8.84429

24
nSolve(w—1:26,r)\r>0 and r<0.25
r

it returns the string “no solution found.” " : "
9 nSolve(xzfl,x) No solution found
OneVar Catalog >

OneVar [1,1X],[Freq][,Category,Include]]
OneVar [n,]X1,X2[X3],..[,X20]1]

Calculates 1-variable statistics on up to 20 lists. A summary of
results is stored in the stat. results variable. (See page 131.)

All the lists must have equal dimension except for Include.

Freqis an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers > 0.

Alphabetical Listing 95

OneVar

Category is a list of numeric category codes for the

corresponding X values.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are

included in the calculation.

An empty (void) element in any of the lists X, Freq, or Category
results in a void for the corresponding element of all those lists.
An empty element in any of the lists X7 through X20 results ina

Catalog >

void for the corresponding element of all those lists. For more

information on empty elements, see page 177.

Output variable Description

stat.X Mean of x values

stat.zx Sum of x values

stat.£x2 Sum of x2 values

stat.sx Sample standard deviation of x

stat.ox Population standard deviation of x

stat.n Number of data points

stat.MinX Minimum of x values

stat.Q1X 1st Quartile of x

stat.MedianX Median of x

stat.Q X 3rd Quartile of x

stat.MaxX Maximum of x values

stat.SSX Sum of squares of deviations from the mean of x
or Catalog >

BooleanExprl or BooleanExpr2 returns Boolean
expression

BooleanList1 or BooleanList2 returns Boolean list
BooleanMatrix1 or BooleanMatrix2 returns Boolean
matrix

Returns true or false or a simplified form of the original
entry.

Define g(x):Func Done

If x<0 or x=5
Goto end
Return x-3
Lbl end
EndFunc

&3

)

9

glo

)

A function did not return a value

96 Alphabetical Listing

or

Returns true if either or both expressions simplify to
true. Returns false only if both expressions evaluate
tofalse.

Note: See xor.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing (<] instead of at the end

of each line. On the computer keyboard, hold down Alt

and press Enter.
Integerl or Integer2 = integer

Compares two real integers bit-by-bit using an or
operation. Internally, both integers are converted to
signed, 64-bit binary numbers. When corresponding
bits are compared, the result is 1 if either bit is 1; the
result is 0 only if both bits are 0. The returned value
represents the bit results, and is displayed according
to the Base mode.

You can enter the integers in any number base. Fora
binary or hexadecimal entry, you must use the Ob or

Oh prefix, respectively. Without a prefix, integers are
treated as decimal (base 10).

If you enter a decimal integer that is too large for a
signed, 64-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range. For more information, see
»Base2, page 20.

Note: See xor.

ord()
ord(String) = integer
ord(List1) = list

Returns the numeric code of the first character in
character string String, or alist of the first characters
of each list element.

Catalog >

In Hex base mode:

0h7AC36 or Oh3D5F Oh7BD7F
Important: Zero, not the letter O.

In Bin base mode:

0b100101 or 0b100 0b100101

Note: A binary entry can have up to 64 digits (not
counting the Ob prefix). A hexadecimal entry can have
up to 16 digits.

Catalog >
ord("hello") 104
char(104) "h"
01‘d(char(24)) 24
ord({ "alpha","beta" }) { 97,98 }

Alphabetical Listing 97

P

P»Rx() Catalog >

P»Rx(rExpr, O0Expr) = expression In Radian angle mode:

P»Rx(rList, 0List) = list (o)

P»Rx(rMatrix, 0Matrix) = matrix PP Rx|4,60 2
T T

Returns the equivalent x-coordinate of the (r, 6) pair. P>RX({ ’3,10,13},[?Z,O H

Note: The 0 argument is interpreted as either a {*1.5,7.07107,1‘3}

degree, gradian or radian angle, according to the

current angle mode. If the argument is an expression,

you canuse °, G, or' to override the angle mode

setting temporarily.

Note: You can insert this function from the computer

keyboard by typing P@>Rx (...) .

P»>Ry() Catalog >

In Radian angle mode:
P»Ry(rValue, OValue) = value
P»Ry(rList, 0List) = list
P»Ry(rMatrix, 0Matrix) = matrix P PRy({ 310,13 }) { 3’1’0})

Returns the equivalent y-coordinate of the (r, 6) pair.

P»Ry(4,60°) 3.4641

{-2.59808,-7.07107,0}

Note: The 0 argument is interpreted as either a
degree, radian or gradian angle, according to the
current angle mode.°"

Note: You caninsert this function from the computer
keyboard by typing P@>Ry (...) .

PassErr Catalog >
PassErr For an example of PassErr, See

Example 2 under the Try command,
Passes an error to the next level. page 141.

If system variable errCode is zero, PassErr does not do
anything.

The Else clause of the Try...Else...EndTry block should use
CIrErr or PassErr. If the error is to be processed or ignored, use
CIrErr. If what to do with the error is not known, use PassErr to
send it to the next error handler. If there are no more pending

98 Alphabetical Listing

PassErr

Try...Else...EndTry error handlers, the error dialog box will be
displayed as normal.

Note: See also CIrErr, page 25, and Try, page 141.

Note for entering the example: In the Calculator application on
the handheld, you can enter multi-line definitions by pressing
instead of at the end of each line. On the computer
keyboard, hold down Alt and press Enter.

Catalog >

piecewise() Catalog >

piecewise(Exprl[, Condl|, Expr2 [, Cond2|, ..111]) x, x>0 Done
Define p(x): def.x<0

Returns definitions for a piecewise function in the undet, x=

form of alist. You can also create piecewise p(l 1

definitions by using a template. P(’ll undef

Note: See also Piecewise template, page 6.

poissCdf() Catalog > &3

poissCdf(A,/owBound,upBound) = number if lowBound and

upBound are numbers, list if lowBound and upBound are lists

poissCdf(r, upBound)for P(0<X<upBound) = number if upBound

is a number, list if upBound is a list

Computes a cumulative probability for the discrete Poisson

distribution with specified mean A.

For P(X <upBound), set lowBound=0

poissPdf() Catalog >

poissPdf(\, XVal) = number if XVal is a number, list if XVal is a

list

Computes a probability for the discrete Poisson distribution with

the specified mean X.

» Polar Catalog >

Vector »-Polar [1 3.]»Polar [3.16228 £.71.5651]

Alphabetical Listing 99

» Polar Catalog >

Note: You can insert this operator from the computer
keyboard by typing @>Polar.

Displays vector in polar form [r £ 6]. The vector must
be of dimension 2 and can be a row or a column.

Note: »Polar is a display-format instruction, not a
conversion function. You can use it only at the end of
an entry line, and it does not update ans.

Note: See also »Rect, page 110.

complexValue »Polar In Radian angle mode:

Displays complexVector in polar form. (3+4~i)>Polar 09272951 o
. Degree angle mode returns (r£6). N L0z
. Radian angle mode returns rel®. 4L 3 » Polar ’

complexValue can have any complex form. However,

an re'® entry causes an error in Degree angle mode. "
ry 9 9 In Gradian angle mode:

Note: You must use the parentheses for an (r£ 6)

polar entry. (4-i)» Polar (4 £ 100)

In Degree angle mode:

(3+4-i)» Polar (5 £ 53.1301)
polyEval(Catalog >
polyEval(List1, Exprl) = expression polyEval({ 12,3, 4},2) 26

lyEval(List1, List2, 551
polyEval(List1, List2) = expression polyEval({ 1)2’3,4}’{2;7}) {26;262}

Interprets the first argument as the coefficient of a
descending-degree polynomial, and returns the
polynomial evaluated for the value of the second
argument.

100 Alphabetical Listing

polyRoots() Catalog >

olyRoots(Poly,Var) = list . B
ad (oly.van polyRoots(y°+ly) {-1}

polyRoots(ListOfCoeffs) = list .
cPolyRoots (},3+ 1 y)

The first syntax, polyRoots(Poly, Var), returns a list {_1 0.5-0.8660254 0,540 8660251’}
It . il .

of real roots of polynomial Poly with respect to
variable Var. If no real roots exist, returns an empty polyRoots(x2+2-x+1,x) {'11'1 }

list: {}. polyRoots({1,2,1}] {-1-1}

Poly must be a polynomial in expanded form in one

variable. Do not use unexpanded forms such as
y2ep+1 or xex+2ex+1

The second syntax, polyRoots(ListOfCoeffs), returns
alist of real roots for the coefficients in ListOfCoeffs.

Note: See also cPolyRoots(), page 33.

PowerReg Catalog >
PowerReg X, Y], Freq][, Category, Include]]

Computes the power regressiony = (a+(x)P)on lists X'and Y with
frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.
Xand Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers > 0.

Category is a list of numeric or string category codes for the
corresponding Xand Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output -
.p Description
variable
stat.RegEqgn Regression equation: a+(x)P

Alphabetical Listing 101

Output

variable Description

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformed data
stat.r Correlation coefficient for transformed data (In(x), In(y))
stat.Resid Residuals associated with the power model

stat.ResidTrans | Residuals associated with linear fit of transformed data

Category List, and Include Categories

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,

Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,

stat.FreqReg List of frequencies corresponding to stat. XReg and stat. YReg
Prgm Catalog >
Prgm Calculate GCD and display intermediate results.
Block
EndPrgm Define proggcd(a,b): Prgm
Local d
Template for creating a user-defined program. Must While b#0
be used with the Define, Define LibPub, or Define d::mod(a,b)
LibPriv command. a:=b
b:=d
Block can be a single statement, a series of Disp a," ",b
statements separated with the “:” character, ora EndWhile
series of statements on separate lines. Disp "GCD=",a
Note for entering the example: In the Calculator EndPrgm
application on the handheld, you can enter multi-line Done
definitions by pressing (<] instead of at the end
of each line. On the computer keyboard, hold down Alt prOgng(4560’450)
and press Enter. 450 60
60 30
300
GCD=30
Done

prodSeq()

See I1 (), page 167.

102 Alphabetical Listing

Product (PI)

product()
product(List[, Start], End]]) = expression

Returns the product of the elements contained in List.
Start and End are optional. They specify a range of
elements.

product(Matrix I[, Start[, End]]) = matrix

Returns a row vector containing the products of the
elements in the columns of Matrix1. Start and end
are optional. They specify a range of rows.

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

propFrac()
propFrac(Valuel[, Var]) = value

propFrac(rational_number) returns rational _number
as the sum of an integer and a fraction having the
same sign and a greater denominator magnitude than
numerator magnitude.

propFrac(rational _expression,Var) returns the sum
of proper ratios and a polynomial with respect to Var.
The degree of Var in the denominator exceeds the
degree of Var in the numerator in each proper ratio.
Similar powers of Var are collected. The terms and
their factors are sorted with Var as the main variable.

If Var is omitted, a proper fraction expansion is done
with respect to the most main variable. The
coefficients of the polynomial part are then made
proper with respect to their most main variable first
and soon.

You can use the propFrac() function to represent
mixed fractions and demonstrate addition and
subtraction of mixed fractions.

See 1 (), page 167.

Catalog>
product({1,2,3,4}) 24
product({4,5,8,9},2,3) 40
123 [28 80 162]
product| 45 6
7 8 9]
123 [4 10 18]
product] 45 6,1,2
7 8 9
Catalog>
4 1
ropFrac| — 1+—
proprc| !
-4 1
ropFrac|— 11—
provFia 2| !
11 4
ropFrac|— 1+—
propra 1 :
propFrac(3+L+5+2) 8+£
11 4 44
29
propFrac| 3+L, 5+i 2
11 4 44

Alphabetical Listing 103

Q

GR Catalog >
QR Matrix, gMatrix, rMatrix|, Tol) The floating-point number (9.) in m1 causes results to

be calculated in floating-point form.
Calculates the Householder QR factorization of a real

or complex matrix. The resulting Q and R matrices 123 123
are stored to the specified Matrix. The Q matrix is 45 ¢|7ml 45 6
unitary. The R matrix is upper triangular. 7 8 9 7 8 9.
Optionally, any matrix element is treated as zero if its QR m1,qm,rm Done
absolute value is less than Tol. This tolerance is used qm 0.123091 0.904534 0.408248
only if the matrix has floating-point entries and does 0.492366 0.301511 -0.816497
not contain any symbolic variables that have not been 0.86164 -0.301511 0.408248
assigned a value. Otherwise, Tol is ignored. rm 8.12404 9.60114 11.0782
. If you use [etn] [enter] or set the Auto or 0. 0.904534 1.80907
Approximate mode to Approximate, 0. 0. 0.
computations are done using floating-point
arithmetic.
. If Tol is omitted or not used, the default
tolerance is calculated as:
5E-14 *max(dim(Matrix)) srowNorm(Matrix)
The QR factorization is computed numerically using
Householder transformations. The symbolic solution
is computed using Gram-Schmidt. The columns in
gMatName are the orthonormal basis vectors that
span the space defined by matrix.
QuadReg Catalog >

QuadReg X, Y[, Freql[, Category, Include]]

Computes the quadratic polynomial regression y=a-x2 +hex+c
on lists Xand Y with frequency Freq. A summary of results is
stored in the stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.
Xand Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers >0.

Category is a list of numeric or string category codes for the

104 Alphabetical Listing

QuadReg Catalog >
corresponding X'and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output Description
variable

stat.RegEgn Regression equation: asx2+bsx+c

stat.a, stat.b, Regression coefficients

stat.c

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,

Category List, and Include Categories

stat.FreqReg | List of frequencies corresponding to stat. XReg and stat. YReg

QuartReg Catalog >
QuartReg X, Y[, Freql[, Category, Include]]

Computes the quartic polynomial regression

y = ax4+bex3+ce x2+dex+e on lists X'and Y with frequency Freq.
A summary of results is stored in the stat. results variable. (See
page 131.)

All the lists must have equal dimension except for Include.
Xand Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers >0.

Category is a list of numeric or string category codes for the
corresponding X'and Y data.

Include is a list of one or more of the category codes. Only those

Alphabetical Listing 105

QuartReg Catalog >

data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description
stat.RegEqn Regression equation: asx4+bex3+ce x2+dex+e
stat.a, stat.b, stat.c, Regression coefficients

stat.d, stat.e

stat.R2 Coefficient of determination
stat.Resid Residuals from the regression
stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of

Freq, Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of
Freq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat. XReg and stat. YReg

R

R»PO()

In Degree angle mode:

R»PO (x Value, yValue) = value
R» PO (xList, yList) = list
R» PO (xMatrix, yMatrix) = matrix

RMPO(2,2) 45.

Returns the equivalent 6-coordinate of the In Gradian angle mode:

(x,y) pair arguments.

RrPO(2,2) 50.
Note: The result is returned as a degree, gradian or

radian angle, according to the current angle mode
In Radian angle mode:

setting.
Note: You caninsert this function from the computer R>P9(3,2) 0.588003
keyboard by typingRe>Ptheta (...).

y yyping R»Pe(b -4 2],[0 z 1.5D

[0. 2.94771 0.643501]

106 Alphabetical Listing

R»Pr()

R»Pr(xValue, yValue) = value
RW»Pr(xList, yList) = list
R»Pr (xMatrix, yMatrix) = matrix

Returns the equivalent r-coordinate of the (x,) pair
arguments.

Note: You can insert this function from the computer
keyboard by typingR@>Pr (...) .

»Rad
Value 1™ Rad = value
Converts the argument to radian angle measure.

Note: You can insert this operator from the computer
keyboard by typing @>Rad.

rand()

rand() = expression
rand(#Trials) = list

rand() returns a random value between 0 and 1.

rand(#7rials) returns a list containing #7rials random
values between 0 and 1.

randBin()

randBin(n, p) = expression
randBin(n, p, #Trials) = list

randBin(n, p) returns a random real number from a
specified Binomial distribution.

randBin(n, p, #Trials) returns alist containing #7rials
random real numbers from a specified Binomial
distribution.

Catalog >

In Radian angle mode:

RMPr(3,2) 3.60555
R»Pr(b -4 2],[0 3 1.5D

[3 4.07638

ISR
-

Catalog >
In Degree angle mode:
(1.5)»Rad (0.02618)"
In Gradian angle mode:
(1.5)»Rad (0.023562)"
Catalog > Elﬂ
Set the random-number seed.
RandSeed 1147 Done
rand(2) {0.158206,0.717917}
Catalog >
randBin(80,0.5) 46.
randBin(80,0.5,3) {43.39.41.}

Alphabetical Listing 107

randint()

randint

(lowBound,upBound) =

expression

randint

(lowBound,upBound
J#Trials) = list

randlnt(3, 10)
randInt(3,10,4)

randint
(lowBound,upBound)
returns a random integer
within the range specified
by lowBound and
upBound integer bounds.

randint
(lowBound,upBound
,#Trials) returns a list
containing #Trials
random integers within
the specified range.

randMat()
randMat(numRows, numColumns) = matrix

Returns a matrix of integers between -9 and 9 of the
specified dimension.

Both arguments must simplify to integers.

randNorm()

randNom(y, c) = expression
randNorm(y, o, #Trials) = list

randNorm(y, o) returns a decimal number from the
specified normal distribution. It could be any real
number but will be heavily concentrated in the interval
[u—3¢c, p+3+c].

randNorm(y, o, #7rials) returns a list containing
#Trials decimal numbers from the specified normal
distribution.

Catalog >

{9.3.4.7.}

Catalog >
RandSeed 1147 Done
randMat(3,3) 8 3 6
2 3 6

0 4 6

Note: The values in this matrix will change each time

you press [enter]

Catalog >
RandSeed 1147 Done
randNorm(0,1) 0.492541
randNorm(3,4.5) -3.54356

108 Alphabetical Listing

randPoly()
randPoly(Var, Order) = expression

Returns a polynomial in Var of the specified Order.
The coefficients are random integers in the range -9
through 9. The leading coefficient will not be zero.

Order must be 0-99.

randSamp()
randSamp(List,#Trials[,noRepl]) = list

Returns a list containing a random sample of #7Trials
trials from List with an option for sample replacement
(noRepl=0), or no sample replacement (noRepl=1).
The default is with sample replacement.

RandSeed
RandSeed Number

If Number =0, sets the seeds to the factory defaults
for the random-number generator. If Number #0, it is
used to generate two seeds, which are stored in
system variables seed1 and seed2.

real()

real(Valuel) = value

Returns the real part of the argument.
real(List1) = list

Returns the real parts of all elements.
real(Matrix1) = matrix

Returns the real parts of all elements.

Catalog >

RandSeed 1147 Done

randPoly(x,5) 224363 +dx—6

Catalog >

Define lisr3={1,2,3,4,5} Done

Define list4=randSamp(list3,6) Done
list4 {1.3.3.1.3.,1.}
Catalog >
RandSeed 1147 Done
rand() 0.158206
Catalog >
real(2+3-i) 2

real({1+3-,3,i}) {130}

real

L3

143-i 3)
2 i

Alphabetical Listing 109

»Rect
Vector »Rect

Note: You caninsert this operator from the computer
keyboard by typing @>Rect.

Displays Vector in rectangular form [x, y, z]. The
vector must be of dimension 2 or 3 and can be a row
or acolumn.

Note: »Rect is a display-format instruction, not a

conversion function. You can use it only at the end of
an entry line, and it does not update ans.

Note: See also P Polar, page 99.
complexValue »Rect

Displays complex Value in rectangular form a+bi. The
complexValue can have any complex form. However,
anre'® entry causes an error in Degree angle mode.

Note: You must use parentheses for an (r £ 6) polar
entry.

ref()
ref(Matrix [, Tol]) = matrix
Returns the row echelon form of Matrix1.

Optionally, any matrix element is treated as zero if its
absolute value is less than Tol. This tolerance is used
only if the matrix has floating-point entries and does
not contain any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

. If you use [ctn] [enter] or set the Auto or

Catalog >

(3 yaxa Li)mect
4 6

[1.06066 1.06066 2.59808]

In Radian angle mode:

(k3 11.3986
4-e 3 pRect

T 2.+3.4641-i
4 L —|[PRect

3
In Gradian angle mode:
(1 £ 100))» Rect i
In Degree angle mode:
(4 £ 60))pRect 2.13.4641-i

Note: Totype £, select it from the symbol list in the
Catalog.

Catalog>

2 20 -6 2 4 4

re I — —= =
1 -19-9 55

S5 2 44 1 4 11

7 7

00 1 52

71

110 Alphabetical Listing

ref() Catalog >

Approximate mode to Approximate,
computations are done using floating-point
arithmetic.

. If Tol is omitted or not used, the default
tolerance is calculated as:
5E-14 smax(dim(Matrix 1)) srowNorm(Matrix 1)

Avoid undefined elements in Matrix 1. They can lead
to unexpected results.

For example, if a is undefined in the following
expression, a warning message appears and the
result is shown as:

alO 1i0
o 1 0 a
001 01 0

0 0 1

The warning appears because the generalized
element 1/a would not be valid for a=0.

You can avoid this by storing a value to a beforehand
or by using the constraint (“|") operator to substitute a
value, as shown in the following example.

aloO 010
refllg 1 o|le=0 1o 01

001 000
Note: See also rref(), page 118.
remain() Catalog >

remain(7,0) 7

remain(Valuel, Value2) = value remain(7 3) 1
remain(List1, List2) = list remam(,7 3) 1
remain(Matrix 1, Matrix2) = matrix rerna1n(7;3) 1
Returns the remainder of the first argument with remain(-7,-3) -
respect to the second argument as defined by the remain({ 12;14,16},{9,7,’5}) {3’0,1 }
identities:

remain(x,0) x
remain(x,y) x-yeiPart(x/y)

Alphabetical Listing 111

remain()

As a consequence, note that remain(—x,y) — remain
(x,y). The result is either zero or it has the same sign
as the first argument.

Note: See also mod(), page 85.

Request
Request promptString, var{, DispFlag [, statusVar]]

Request promptString, func(argl, ...argn)

[, DispFlag [, statusVar]]

Programming command: Pauses the program and
displays a dialog box containing the message

promptString and an input box for the user’s
response.

When the user types a response and clicks OK, the

contents of the input box are assigned to variable var.

If the user clicks Cancel, the program proceeds
without accepting any input. The program uses the
previous value of var if var was already defined.

The optional DispFlag argument can be any
expression.

. If DispFlag is omitted or evaluates to 1, the
prompt message and user’s response are
displayed in the Calculator history.

. If DispFlag evaluates to 0, the prompt and
response are not displayed in the history.

The optional status Var argument gives the program a
way to determine how the user dismissed the dialog
box. Note that statusVar requires the DispFlag
argument.

. If the user clicked OK or pressed Enter or
Ctri+Enter, variable statusVar is set to a value
of 1.

. Otherwise, variable statusVar is set to a value
of 0.

The func() argument allows a program to store the
user’s response as a function definition. This syntax
operates as if the user executed the command:

Catalog >

=B

Catalog >

Define a program:

Define request_demo()=Prgm
Request “Radius: ”,r
Disp “Area = “ pi*r2
EndPrgm

Run the program and type a response:

request_demo()

Radius: |5Q

u] Cancel

a

Result after selecting OK:

Radius: 6/2
Area= 28.2743

Define a program:

Define polynomial()=Prgm
Request "Enter a polynomial in x:",p(x)
Disp "Real roots are:",polyRoots(p(x),x)
EndPrgm

Run the program and type a response:

polynomial()

112 Alphabetical Listing

Request
Define func(argl, ...argn) = user’s response

The program can then use the defined function func().
The promptString should guide the user to enter an
appropriate user’s response that completes the
function definition.

Note: You can use the Request command within a
user-defined program but not within a function.

To stop a program that contains a Request command
inside an infinite loop:

. Windows®: Hold down the F12 key and press
Enter repeatedly.

. Macintosh®: Hold down the F5 key and press
Enter repeatedly.

. Handheld: Hold down the key and press
repeatedly.

Note: See also RequestStr, page 113.

RequestStr
RequestStr promptString, var{, DispFlag]

Programming command: Operates identically to the
first syntax of the Request command, except that the
user’s response is always interpreted as a string. By
contrast, the Request command interprets the
response as an expression unless the user encloses
it in quotation marks (““).

Note: You can use the RequestStr command within a
user-defined program but not within a function.

To stop a program that contains a RequestStr
command inside an infinite loop:

. Windows®: Hold down the F12 key and press
Enter repeatedly.

. Macintosh®: Hold down the F5 key and press
Enter repeatedly.

. Handheld: Hold down the key and press
repeatedly.

Note: See also Request, page 112.

Catalog >

Enter a palynomial in 2| x43+3x+1

Result after entering x*3+3x+1 and selecting OK:

Real roots are: {-0.322185}

Catalog >

Define a program:

Define requestStr_demo()=Prgm

RequestStr “Your name:”,name,0

Disp “Response has “,dim(name),” characters.”
EndPrgm

Run the program and type a response:

requestStr_demo()

Your name: | Frank.

o Cancel

a

Result after selecting OK (Note that the DispFlag
argument of 0 omits the prompt and response from
the history):

Alphabetical Listing 113

RequestStr

Return
Return [Expr]

Returns Expr as the result of the function. Use within
aFunc...EndFunc block.

Note: Use Return without an argument within a
Prgm...EndPrgm block to exit a program.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing (<] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

right()
right(ListI[, Num]) = list

Returns the rightmost Num elements contained in
Listl.

If you omit Num, returns all of List1.
right(sourceString[, Num]) = string

Returns the rightmost Num characters contained in
character string sourceString.

If you omit Num, returns all of sourceString.
right(Comparison) = expression

Returns the right side of an equation or inequality.

k23 ()

k23(Expr, Var, depVar, {Var0, VarMax}, depVar0,
VarStep [, diftol]) = matrix

k23(SystemOfExpr, Var, ListOfDepVars, {Var0,
VarMax}, ListOfDepVars0, VarStepl, diftol]) =

Catalog >
requestStr_demo()

Response has 5 characters.

Catalog >

Define factorial (nn):
Func

Local answer,counter

1 - answer

For counter,1,nn

answer+ counter - answer
EndFor

Return answer{

EndFunc

factorial (3) 6

Catalog >

right({1,3,2,4},3) {324}

righl("Hello " ,2) "lo"

Catalog >

Differential equation:

y'=0.001%y*(100-y) and y(0)=10

114 Alphabetical Listing

k23 ()
matrix

tk23(ListOfExpr, Var, ListOfDepVars, {Var0,
VarMax}, ListOfDepVars0, VarStepl, diftol]) =
matrix

Uses the Runge-Kutta method to solve the system
d depVar
dVar

with depVar(Var0)=depVar(on the interval
[Var0,VarMax]. Returns a matrix whose first row
defines the Var output values as defined by VarStep.
The second row defines the value of the first solution
component at the corresponding Var values, and so
on.

= Expr(Var,depVar)

Expris the right hand side that defines the ordinary
differential equation (ODE).

SystemOfExpr is a system of right-hand sides that
define the system of ODEs (corresponds to order of
dependent variables in ListOfDepVars).

ListOfExpris alist of right-hand sides that define the
system of ODEs (corresponds to order of dependent
variables in ListOfDepVars).

Var is the independent variable.
ListOfDepVars is alist of dependent variables.

{Var0, VarMax} is a two-element list that tells the
function to integrate from Var0to VarMax.

ListOfDepVars0is a list of initial values for dependent

variables.

If VarStep evaluates to a nonzero number: sign
(VarStep) = sign(VarMax-Var0) and solutions are
returned at Var0+i* VarStep for all i=0,1,2,... such that
Var0+i*VarStep is in [var0, VarMax] (may not get a
solution value at VarMax).

if VarStep evaluates to zero, solutions are returned at

the "Runge-Kutta" Var values.

diftol is the error tolerance (defaults to 0.001).

Catalog >

1k23(0.001+y-(100),£,7,{0,100},10,1)
0. 1. 2. 3, 4
10. 10.9367 11.9493 13.042 14.2

To see the entire result, press a and then use ¢ and p
to move the cursor.

Same equation with difiol set to 1.E-6

rk23{0.001-y-(100-y},£y,{ 0,100},10,1,1.£-6)
0. 1. 2. 3. 4.,
10. 10.9367 11.9495 13.0423 14.2189

System of equations:
yI'=y1+0.1-y1-y2
2=3-y2-yl-y2

with y/(0)=2 and y2(0)=5

rk23‘ [’yHO.l VIV2 (12t {os){250]
\3y2-yly2 |
0. 1. 2. 3. 4.

2. 1.94103 4.78694 3.25253 1.82848 »
5. 16.8311 12.3133 3.51112 6.27245

Alphabetical Listing 115

root()

root(Value) = root
root(Valuel, Value2) = root

root(Value) returns the square root of Value.

root(Valuel, Value?2) returns the Value2 root of
Valuel. Value I can be a real or complex floating point
constant or an integer or complex rational constant.

Note: See also Nth root template, page 6.

rotate()
rotate(/nteger [, #ofRotations]) = integer

Rotates the bits in a binary integer. You can enter
Integerl in any number base; it is converted
automatically to a signed, 64-bit binary form. If the
magnitude of Integer! is too large for this form, a
symmetric modulo operation brings it within the
range. For more information, see »Base2, page 20.

If #ofRotations is positive, the rotation is to the left. If
#ofRotations is negative, the rotation is to the right.
The default is —1 (rotate right one bit).

For example, in a right rotation:

Each bit rotates right.
0b00000000000001111010110000110101
Rightmost bit rotates to leftmost.

produces:
0b10000000000000111101011000011010

The result is displayed according to the Base mode.
rotate(ListI[,#ofRotations]) = list

Returns a copy of List! rotated right or left by #of’
Rotations elements. Does not alter List!.

If #ofRotations is positive, the rotation is to the left. If
#of Rotations is negative, the rotation is to the right.
The default is —1 (rotate right one element).

Catalog >
3\/5 2

3;/; 1.44225

Catalog >

In Bin base mode:

rotale(Obl111111111111111111111111111111)
0b10000000000000000000000000000000001 7

rotate(256,1) 0b1000000000

To see the entire result, press .a and then use ¢ and p
to move the cursor.

In Hex base mode:

rotate{Oh78E) 0h3C7
rotate{0h78E,2) 0h80000000000001E3
rotate(0h78E,2) Oh1E38

Important: To enter a binary or hexadecimal
number, always use the Ob or Oh prefix (zero, not the
letter O).

In Dec base mode:

rotate({1,2,3,4}) {4123}
rotate{{ 1,2,3,4},2) {3412}
rotate({1,2,3,4 },1) {2341}

116 Alphabetical Listing

rotate()
rotate(StringI[, #ofRotations]) = string

Returns a copy of String1 rotated right or left by
#ofRotations characters. Does not alter Stringl.

If #ofRotations is positive, the rotation is to the left. If
#ofRotations is negative, the rotation is to the right.
The default is —1 (rotate right one character).

round()
round(ValueI[, digits]) = value

Returns the argument rounded to the specified
number of digits after the decimal point.

digits must be an integer in the range 0-12. If digits is
not included, returns the argument rounded to 12
significant digits.

Note: Display digits mode may affect how this is
displayed.

round(ListI[, digits]) = list

Returns a list of the elements rounded to the specified
number of digits.

round(Matrix 1[, digits]) = matrix

Returns a matrix of the elements rounded to the
specified number of digits.

rowAdd()
rowAdd(Matrix1, rindex 1, rindex2) = matrix

Returns a copy of Matrix I with row rilndex2 replaced
by the sum of rows rindex 1 and rindex2.

rowDim()
rowDim(Matrix) = expression
Returns the number of rows in Matrix.

Note: See also colDim(), page 26.

Catalog >

rotale("abed") "dabc"
rotale("abed" ;2) "cdab"
rotale(" abcd”,l) "beda"

Catalog > [
round(1.234567,3) 1.235

round({n,\ﬁ,ln(2)},4)

{3.1416,1.4142,0.6931}

mundﬂln(S) ln(3)j,1) [1.6 1.1J

3.1 27

Catalog >

rowAdd(3 4 ,1,2) 3 4
3 2 0 2
Catalog >

12 12
3 g4|>ml 34
5 6 5 6
rowDim(mI) 3

Alphabetical Listing 117

rowNorm()

rowNorm(Matrix) = expression

Returns the maximum of the sums of the absolute

values of the elements in the rows in Matrix.

Note: All matrix elements must simplify to numbers.

See also colNorm(), page 26.

rowSwap()

rowSwap(Matrix 1, rindex 1, rindex2) = matrix

Returns Matrix I with rows rindex 1 and rindex?2

exchanged.

mref()

mef(Matrix I[, Tol]) = matrix

Returns the reduced row echelon form of Matrix1.

Optionally, any matrix element is treated as zero if its
absolute value is less than Tol. This tolerance is used
only if the matrix has floating-point entries and does

not contain any symbolic variables that have not been

assigned a value. Otherwise, Tol is ignored.

. If you use [ctn] [enter] or set the Auto or
Approximate mode to Approximate,

computations are done using floating-point

arithmetic.

. If Tol is omitted or not used, the default

tolerance is calculated as:

5E—14 smax(dim(Matrix 1)) srowNorm(Matrix 1)

Note: See also ref(), page 110.

Catalog >

S5 6 7 25
rowNomf| 3 4 ¢
9 9 7
Catalog>
12 12
3 4 - mat 3 4
56 56
rowaap(mat,l,S) 5 6
3 4
12
Catalog>
2 20 6 100 66
mefllp 1 9 9 T
5 2 4 4 147
010 —
71
-62
001 —
71

118 Alphabetical Listing

sec()

sec(Valuel) = value
sec(Listl) = list

Returns the secant of Valuel or returns a list
containing the secants of all elements in List/.

Note: The argument is interpreted as a degree,
gradian or radian angle, according to the current angle
mode setting. You can use °, G, or' to override the
angle mode temporarily.

sec”()

sec(Valuel) = value
sec(Listl)= list

Returns the angle whose secant is Value I or returns
a list containing the inverse secants of each element
of List1.

Note: The result is returned as a degree, gradian, or
radian angle, according to the current angle mode
setting.

Note: You caninsert this function from the keyboard
by typingarcsec(...).

sech()

sech(Valuel) = value
sech(Listl) = list

Returns the hyperbolic secant of Valuel or returns a
list containing the hyperbolic secants of the List/
elements.

(5] key

In Degree angle mode:

sec(45) 1.41421
sec({1,23,4}) {1.00015,1.00081,1.00244 }

(%) key

In Degree angle mode:

sec"(l) 0.

In Gradian angle mode:

sec’ (\/2_) 50.

In Radian angle mode:

sec” ({ 1,2,5 })

{0,1.0472,1.36044 }

Catalog >

0.099328

sech(3)

sech({1,2.3,4})
{0.648054,0.198522,0.036619 }

Alphabetical Listing 119

sech™()

sech(Valuel) = value
sech™(Listl) = list

Returns the inverse hyperbolic secant of Valuel or
returns a list containing the inverse hyperbolic
secants of each element of List/.

Note: You caninsert this function from the keyboard
by typingarcsech(...).

seq()
seq(Expr, Var, Low, Highl, Step]) = list

Increments Var from Low through High by an
increment of Step, evaluates Expr, and returns the
results as a list. The original contents of Var are still
there after seq() is completed.

The default value for Step = 1.

seqGen()

seqGen(Expr, Var, depVar, {Var0, VarMax}],
ListOftnitTerms
[, VarStep|, CeilingValuelll) = list

Generates a list of terms for sequence depVar(Var)
=Expr as follows: Increments independent variable
Var from Var0 through VarMax by VarStep,
evaluates depVar(Var) for corresponding values of
Var using the Expr formula and ListOfInitTerms, and
returns the results as a list.

seqGen(ListOrSystemOfExpr, Var, ListOfDepVars,
{Var0, VarMax} |

, MatrixOfInitTerms[, VarStep|, CeilingValue]]]) =
matrix

Catalog >

In Radian angle and Rectangular complex mode:

sech"(l) 0
sech™({1,2,2.1})
{0,2.0044-i,8.615+1.07448-i }

Catalog >
{1,49,16,25,36}

se (nz,n,l,é)
q

seq(1 ,n,1,10, 2) {1,%,%,7,;}

L,n,l,lo,l
n2

Press Ctrl+Enter{ctr][enter] (Macintosh®:36 +Enter) to
evaluate:

sum(seq(3 ,n,1,10. ID
n

sum|seq|

1.54977

Catalog >

Generate the first 5 terms of the sequence u(n) = u(n-
1)2/2, with u(1)=2 and VarStep=1.

(u{n-1))?

seqGen|

_6

nu{15)
2
9405

Example in which Var0=2:

120 Alphabetical Listing

seqGen()

Generates a matrix of terms for a system (or list) of
sequences ListOfDepVars(Var)
=ListOrSystemOfExpr as follows: Increments
independent variable Var from Var(through VarMax
by VarStep, evaluates ListOfDepVars(Var) for
corresponding values of Var using
ListOrSystemOfExpr formula and
MatrixOfInitTerms, and returns the results as a
matrix.

The original contents of Var are unchanged after
seqGen() is completed.

The default value for VarStep =1.

seqn()

seqn(Expr(u, nl, ListOfInitTerms[, nMax][,
CeilingValuell]) = list

Generates a list of terms for a sequence u(n)=Expr(u,
n) as follows: Increments » from 1 through nMax by
1, evaluates u(n) for corresponding values of n using
the Expr(u, n) formula and ListOfInitTerms, and
returns the results as a list.

seqn(Expr(n[, nMax[, CeilingValuel]) = list

Generates a list of terms for a non-recursive
sequence u(n)=Expr(n) as follows: Increments n from
1 through nMax by 1, evaluates u(n) for
corresponding values of n using the Expr(n) formula,
and returns the results as a list.

If nMax is missing, nMax is set to 2500
If nMax=0, nMax is set to 2500

Note: seqn() calls seqGen() with n0=1 and nstep =1

Catalog >

{25} 3})
o
0

-

u(n*1)+1
n

seqGen|

SRS
sl\l

System of two sequences:

squen‘ 1 112(n l 2 - 1]} ndutu2}, {1,5}{7}\]
2

1

NN
=
|3 wi=

1
3
22 3
2

12 24

Note: The Void (_) in the initial term matrix above is
used to indicate that the initial term for u1(n) is
calculated using the explicit sequence formula u1(n)
=1/n.

Catalog >

Generate the first 6 terms of the sequence u(n) = u(n-
1)/2, with u(1)=2.

seqn(1) {2}6

49’16’25’ 36

Alphabetical Listing 121

setMode()

setMode(mode Namelnteger, settinglnteger) =
integer
setMode(/ist) = integer list

Valid only within a function or program.

setMode(mode Namelnteger, settingInteger)
temporarily sets mode modeNamelInteger to the new
setting settinglnteger, and returns an integer
corresponding to the original setting of that mode. The
change is limited to the duration of the
program/function’s execution.

modeNameInteger specifies which mode you want to
set. It must be one of the mode integers from the
table below.

settingInteger specifies the new setting for the mode.
It must be one of the setting integers listed below for
the specific mode you are setting.

setMode(/is?) lets you change multiple settings. /ist
contains pairs of mode integers and setting integers.
setMode(/ist) returns a similar list whose integer pairs
represent the original modes and settings.

If you have saved all mode settings with getMode(0)
—var, you can use setMode(var) to restore those
settings until the function or program exits. See
getMode(), page 58.

Note: The current mode settings are passed to called
subroutines. If any subroutine changes a mode
setting, the mode change will be lost when control
returns to the calling routine.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing [<] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

Catalog >

Display approximate value of & using the default
setting for Display Digits, and then display = with a
setting of Fix2. Check to see that the default is
restored after the program executes.

Define progl ():Prgm Done
Disp
setMode(1,16)
Disp 1
EndPrgm
progi()
3.14159
3.14
Done

Mode Mode

Name Integer Setting Integers

Display 1 1=Float, 2=Float1, 3=Float2, 4=Float3, 5=Float4, 6=Float5, 7=Float6,
Digits 8=Float7, 9=Float8, 10=Float9, 11=Float10, 12=Float11, 13=Float12,

122 Alphabetical Listing

Mode Mode

Name Integer Setting Integers
14=Fix0, 15=Fix1, 16=Fix2, 17=Fix3, 18=Fix4, 19=Fix5, 20=Fix6, 21=Fix7,
22=Fix8, 23=Fix9, 24=Fix 10, 25=Fix11, 26=Fix12

Angle 2 1=Radian, 2=Degree, 3=Gradian

Exponential 3 1=Normal, 2=Scientific, 3=Engineering

Format

Real or 4 1=Real, 2=Rectangular, 3=Polar

Complex

Auto or 5 1=Auto, 2=Approximate

Approx.

Vector 6 1=Rectangular, 2=Cylindrical, 3=Spherical

Format

Base 7 1=Decimal, 2=Hex, 3=Binary

shift() Catalog >

shift(lntegerI[,#ofShifts]) = integer

Shifts the bits in a binary integer. You can enter
Integerl in any number base; it is converted
automatically to a signed, 64-bit binary form. If the
magnitude of Integer! is too large for this form, a
symmetric modulo operation brings it within the
range. For more information, see »Base2, page 20.

If #ofShifts is positive, the shift is to the left. If
#ofShifts is negative, the shift is to the right. The
default is —1 (shift right one bit).

In a right shift, the rightmost bit is dropped and 0 or 1
is inserted to match the leftmost bit. In a left shift, the
leftmost bit is dropped and 0 is inserted as the
rightmost bit.

For example, in a right shift:
Each bit shifts right.
0b0000000000000111101011000011010

Inserts 0 if leftmost bit is 0,
or 1if leftmost bit is 1.

produces:

In Bin base mode:

shift{0b1111010110000110101)

0b111101011000011010
shift(256,1) 0b1000000000
In Hex base mode:

shift(0h78E) 0h3C7
shift{Oh78E,2) Oh1E3
shift{Oh78E,2) Oh1E38

Important: To enter a binary or hexadecimal
number, always use the Ob or Oh prefix (zero, not the
letter O).

Alphabetical Listing 123

shift()
0b00000000000000111101011000011010

The result is displayed according to the Base mode.
Leading zeros are not shown.

shift(List1[, #ofShifts]) = list

Returns a copy of ListI shifted right or left by
#ofShifts elements. Does not alter List1.

If #ofShifts is positive, the shift is to the left. If
#ofShifts is negative, the shift is to the right. The
default is —1 (shift right one element).

Elements introduced at the beginning or end of /ist by

the shift are set to the symbol “undef”.
shift(String [, #ofShifis]) = string

Returns a copy of String1 shifted right or left by
#ofShifts characters. Does not alter Stringl.

If #ofShifts is positive, the shift is to the left. If
#ofShifts is negative, the shift is to the right. The
default is —1 (shift right one character).

Characters introduced at the beginning or end of
string by the shift are set to a space.

sign()

sign(Valuel) = value
sign(List1) = list
sign(Matrix 1) = matrix

For real and complex Valuel, returns Valuel | abs
(ValueI)when Valuel #0.

Returns 1if Value Iis positive.Returns —1if Valuel is

negative. sign(0) returns +1 if the complex format
mode is Real; otherwise, it returns itself.

sign(0) represents the unit circle in the complex
domain.

For a list or matrix, returns the signs of all the
elements.

In Dec base mode:

Catalog >

shifi({1,2,3,4}) {undet,1,2,3}
shift({ 1,2,3,4},*2) {undef,undef,l,Z }
shifi{{1,2,3,4},2) {3.4,undefundet}
shift("abcd") " abc"
shift{"abcd",-2) " ab"
shif{"abed", 1) "bed "
Catalog >
sign(’3.2) -1
sign({2,3.4,5}) {1,111}
If complex format mode is Real:
sign[-3 0 3]) [1 undef 1]

124 Alphabetical Listing

simult()
simult(coeffMatrix, constVector|, Tol]) = matrix

Returns a column vector that contains the solutions
to a system of linear equations.

Note: See also linSolve(), page 73.

coeffMatrix must be a square matrix that contains
the coefficients of the equations.

constVector must have the same number of rows
(same dimension) as coeffMatrix and contain the
constants.

Optionally, any matrix element is treated as zero if its
absolute value is less than Tol. This tolerance is used
only if the matrix has floating-point entries and does
not contain any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

. If you set the Auto or Approximate mode to
Approximate, computations are done using
floating-point arithmetic.

. If Tol is omitted or not used, the default
tolerance is calculated as:
5E-14 smax(dim(coeffMatrix)) srowNorm

(coeffMatrix)
simult(coeffMatrix, constMatrix[, Toll) = matrix
Solves multiple systems of linear equations, where

each system has the same equation coefficients but
different constants.

Each column in constMatrix must contain the
constants for a system of equations. Each column in
the resulting matrix contains the solution for the
corresponding system.

sin()

sin(Valuel) = value
sin(List1) = list

sin(Value 1) returns the sine of the argument.

Catalog >

Solve for x and y:
x+2y=1
3x+dy=-1

=il)

The solution is x=—3 and y=2.

Solve:

ax+by=1

cx+dy=2

1 2|5 matxcl 12
3 4 3 4

simull(mab(l ,[1 D
2

= o

Solve:
x+2y=1
3x+4y=-1

x+2y=2
3x+4y=-3

Simuh(1 2]t 2D -3 -7
3 4)]1 3

5 2

2

For the first system, x=—3 and y=2. For the second
system, x=—7 and y=9/2.

(%) key

In Degree angle mode:

Alphabetical Listing 125

sin()
sin(List1) returns a list of the sines of all elements in

Listl.

Note: The argument is interpreted as a degree,
gradian or radian angle, according to the current angle
mode. You canuse°, 9, orf to override the angle
mode setting temporarily.

sin(squareMatrix1) = squareMatrix

Returns the matrix sine of squareMatrix 1. This is not
the same as calculating the sine of each element. For
information about the calculation method, refer to cos

0-

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

sin()

sin(Valuel) = value
sin(List1) = list

sin(ValueI) returns the angle whose sine is Valuel.

sin(ListI) returns a list of the inverse sines of each
element of List1.

Note: The result is returned as a degree, gradian or
radian angle, according to the current angle mode
setting.

Note: You can insert this function from the keyboard
by typingarcsin(...).

sin(squareMatrix1) = squareMatrix

(%) key

) ((n),) 0.707107
sm||—
4

sin(45) 0.707107

sin{{0,60,90}) {0.,0.866025,1.}

In Gradian angle mode:

sin(50) 0.707107
In Radian angle mode:
. (n) 0.707107
sm|—
4
sin(45°) 0.707107

In Radian angle mode:

1 5 3

sinflg4 2 1

6 21
0.9424 -0.04542 -0.031999

-0.045492 0.949254 -0.020274
-0.048739 -0.00523 0.961051

key
In Degree angle mode:
sin?(1) 90.
In Gradian angle mode:
sin(1) 100.

In Radian angle mode:
sin'({0,0.20.5}) {0.,0.201358,0.523599 }

In Radian angle mode and Rectangular complex
format mode:

126 Alphabetical Listing

sin™()
Returns the matrix inverse sine of squareMatrix1.
This is not the same as calculating the inverse sine of

each element. For information about the calculation
method, refer to cos().

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

sinh()

sinh(Numverl) = value
sinh(Listl) = list

sinh (Value I) returns the hyperbolic sine of the
argument.

sinh (List1) returns a list of the hyperbolic sines of
each element of List].

sinh(squareMatrix 1) = squareMatrix

Returns the matrix hyperbolic sine of squareMatrix1.
This is not the same as calculating the hyperbolic sine
of each element. For information about the calculation
method, refer to cos().

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

sinh™()

sinh™(Valuel) = value
sinh(List]) = list

sinh(Value I) returns the inverse hyperbolic sine of
the argument.

sinh(ListI) returns a list of the inverse hyperbolic
sines of each element of List].

Note: You can insert this function from the keyboard
by typingarcsinh(...).

sinh™(squareMatrix1) = squareMatrix

(%) key

“f.)

[*0.174533—0.12198- i 1.74533-2.35591- i

1.39626—1.88473-1 0.174533—0.593162- i

Catalog > [

sinh(l‘2)
sinh({0,1.2,3.})

1.50946
{0,1.50946,10.0179}

In Radian angle mode:

fr s 3
sinhl{4 5 1
6 2 1

360.954 305.708 239.604

352912 233.495 193.564

298.632 154.599 140.251

Catalog>

sinh"(O) 0

sinh”({0,2.1,3}) {0,1.48748,1.81845}

In Radian angle mode:

Alphabetical Listing 127

sinh™() Catalog >

Returns the matrix inverse hyperbolic sine of

squareMatrix 1. This is not the same as calculating sinh™ i 2 i

the inverse hyperbolic sine of each element. For 6 2 1

information about the calculation method, refer to cos 0.041751 2.15557 1.1582

0- [1.46382 0.926568 0.112557
2.75079 -1.5283 0.57268

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

SinReg Catalog > 3
SinReg X, Y], [lterations],[Period][, Category, Include]]

Computes the sinusoidal regression on lists X'and Y. A summary
of results is stored in the stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.
Xand Y are lists of independent and dependent variables.

Iterations is a value that specifies the maximum number of times
(1 through 16) a solution will be attempted. If omitted, 8 is used.
Typically, larger values result in better accuracy but longer
execution times, and vice versa.

Period specifies an estimated period. If omitted, the difference
between values in X' should be equal and in sequential order. If
you specify Period, the differences between x values can be
unequal.

Category is a list of numeric or string category codes for the
corresponding Xand Y data.

Include is alist of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

The output of SinReg is always in radians, regardless of the
angle mode setting.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output
. Description
variable P
stat.RegEqgn Regression Equation: assin(bx+c)+d

128 Alphabetical Listing

Output
. Description

variable ot

stat.a, stat.b, Regression coefficients

stat.c, stat.d

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

SortA Catalog > EE

SortA ListI[, List2] [, List3]... {2’1,4,3}_,[,5-[] {2)1’4,3}

SontA Vectorl[, Vector2] [, Vector3]... SortA listl Done

Sorts the elements of the first argument in ascending list] { 1,2,3,4}

order. {4321}~ list2 {4321}

If you include additional arguments, sorts the SortA list2,list1 Done

elements of each so that their new positions match list2 { 1,2,3,4}

the new positions of the elements in the first list] {4’3’2’1 }

argument.

All arguments must be names of lists or vectors. All

arguments must have equal dimensions.

Empty (void) elements within the first argument move

to the bottom. For more information on empty

elements, see page 177.

SortD Catalog >

SortD ListI[, List2][, List3]... {2,1,4,3}—>Iist1 {2,1’4,3}

SontD VectorlI[,Vector2][,Vector3]... { 1’2,3’4} L list2 { 1’2’3’4}

Identical to SortA, except SortD sorts the elements in SortD list1,list2 Done

descending order. list {4,3’2’1 }

Empty (void) elements within the first argument move ~ list2 {3,4,1,2}

to the bottom. For more information on empty
elements, see page 177.

Alphabetical Listing 129

» Sphere
Vector» Sphere

Note: You can insert this operator from the computer
keyboard by typing @>Sphere.

Displays the row or column vector in spherical form
[p£0Zgl.

Vector must be of dimension 3 and can be either a
row or a column vector.

Note: »Sphere is a display-format instruction, not a
conversion function. You can use it only at the end of
an entry line.

sqrt()

sqrt(Valuel) = value
sqri(List1) = list

Returns the square root of the argument.

For alist, returns the square roots of all the elements
inListl.

Note: See also Square root template, page 5.

1 2 3]»Sphere
(]
[3.74166 ~1.10715 ,.0.640522]

([2 L= 3])>Sphere
4

[3.60555 £.0.785398 /.0.588003]

“a (P lg)

Catalog >

Catalog >

=1

2

{924}

{3,1.41421,2}

130 Alphabetical Listing

stat.results

stat.results

Displays results from a statistics calculation.

The results are displayed as a set of name-value

Catalog >

xlist::{ 1,2,3,4,5}

{12,345}

ylist:={4,8,11,14,17}

{4,8,11,1417}

LinRegMXx xlist,ylist,1: stat.results

pairs. The specific names shown are dependent on "Title" "Linear Regression (mx+b)"
the most recently evaluated statistics function or "RegEqn" "m*x+b"
command. "m" 3.2
"b" 1.2
You can copy a name or value and paste it into other g 0.996109
locations. et 0.998053
"Resid" "L
Note: Avoid defining variables that use the same stat.values "Lincar R,?gr:ssmf,l (mx+b)”
names as those used for statistical analysis. In some m;;b
cases, an error condition could occur. Variable names 1.2
used for statistical analysis are listed in the table 0.996109
below. 0.998053
"{-0.4,0.4,0.2,0.,-0.2}"
stat.a stat.dfDenom stat.MedianY stat.Q3X stat.SSBlock
stat.AdjR? stat.dfBlock stat.MEPred stat.Q3Y stat.SSCol
stat.b stat.dfCol stat.MinX stat.r stat.SSX
stat.b0 stat.dfError stat.MinY stat.r? stat.SSY
stat.b1 stat.dfInteract stat.MS stat.RegEqgn stat.SSError
stat.b2 stat.dfReg stat.MSBlock stat.Resid stat.SSInteract
stat.b3 stat.dfNumer stat.MSCol stat.ResidTrans stat. SSReg
stat.b4 stat.dfRow stat.MSError stat.ox stat.SSRow
stat.b5 stat.DW stat.MSinteract stat.oy stat.tList
stat.b6 stat.e stat. MSReg stat.ox1 stat.UpperPred
stat.b7 stat.ExpMatrix stat. MSRow stat.ox2 stat.UpperVal
stat.b8 stat.F stat.n stat.Xx stat.x
stat.b9 stat.FBlock Stat. p stat.=x? stat.x1
stat.b10 stat.Fcol stat. p1 stat.=xy stat.x2
stat.bList stat.FInteract stat. p2 stat.Xy stat.xDiff
stat.? stat.FreqReg statﬁDiff stat.Xy? stat.XxList
stat.c stat.Frow stat.PList stat.s stat.XReg
stat.CLower stat.Leverage stat.PVal stat.SE stat.XVal
stat.CLowerList stat.LowerPred stat.PValBlock stat.SEList stat.XValList
stat.ComplList stat.LowerVal stat.PValCol stat. SEPred stat.y
stat. CompMatrix stat.m stat.PVallnteract stat.sResid stat.§

Alphabetical Listing 131

stat.CookDist stat.MaxX
stat.CUpper stat.MaxY

stat. CUpperList stat.ME

stat.d stat.MedianX

stat.SEslope stat.gList
stat.sp stat.YReg
stat.SS

Note: Each time the Lists & Spreadsheet application calculates statistical results, it copies the “stat.”
group variables to a “stat#.” group, where # is a number that is incremented automatically. This lets

you maintain previous results while performing multiple calculations.

stat.values

stat.values

Displays a matrix of the values calculated for the most recently

evaluated statistics function or command.

Unlike stat.results, stat.values omits the names associated with

the values.

You can copy a value and paste it into other locations.

stDevPop()

stDevPop(List [, freqList]) = expression

Returns the population standard deviation of the

elements in List.

Each frreqList element counts the number of
consecutive occurrences of the corresponding

element in List.

Note:List must have at least two elements. Empty
(void) elements are ignored. For more information on

empty elements, see page 177.

stDevPop(Matrix I, freqMatrix]) = matrix

Returns a row vector of the population standard
deviations of the columns in Matrix1.

Each freqMatrix element counts the number of
consecutive occurrences of the corresponding

element in Matrix1.

Note:Matrix Imust have at least two rows. Empty
(void) elements are ignored. For more information on

empty elements, see page 177.

Catalog >

See the stat.results example.

Catalog >

In Radian angle and auto modes:

stDevPop({1,2,5,6,3,2}) 3.59398

stDevPop({1.3,25,6.4},{32,5}) 411107

125
stDevPop 301
15 7 3
[3.26599 2.94392 1.63299]
1.2 53][4 2
stDevPopl| 55 7303 3
L6 -4|[17

[2.52608 5.21506]

132 Alphabetical Listing

stDevSamp()
stDevSamp(List|, freqList]) = expression

Returns the sample standard deviation of the
elements in List.

Each frreqList element counts the number of
consecutive occurrences of the corresponding
element in List.

Note:List must have at least two elements. Empty
(void) elements are ignored. For more information on
empty elements, see page 177.

stDevSamp(Matrix I[, freqMatrix]) = matrix

Returns a row vector of the sample standard
deviations of the columns in Matrix1.

Each freqMatrix element counts the number of
consecutive occurrences of the corresponding
element in Matrix1.

Note:Matrix Imust have at least two rows. Empty
(void) elements are ignored. For more information on
empty elements, see page 177.

Stop

Stop

Programming command: Terminates the program.
Stop is not allowed in functions.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing (] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

Store

Catalog >

stDevSamp({1,2,5,6,3,2}) 3.937

stDevSamp({1.3,2.5,6.4},{3,2,5})
433345

(1 2 5
stDevSamp(| 3 o
L5 7 3
[4. 3.60555 2.]
1.2 5.3][4 2
stDevSamp|| 55 7.3p3 3
L6 41 7
[2.7005 5.44695]
Catalog>
i:=0 0
Define progl(): Prgm Done
For 1,1,10,1
Ifi=5
Stop
EndFor
EndPrgm
progl() Done
i 5

See —(store), page 175.

Alphabetical Listing 133

string()
string(Expr) = string

Simplifies Expr and returns the result as a character
string.

subMat()

subMat(Matrix I, startRow]|, startCol][, endRow][,
endColl) = matrix

Returns the specified submatrix of Matrix1.

Defaults: startRow=1, startCol=1, endRow=last row,

endCol=last column.

Sum (Sigma)

sum()
sum(List[, Start[, End]]) = expression
Returns the sum of all elements in List.

Start and End are optional. They specify a range of
elements.

Any void argument produces a void result. Empty
(void) elements in List are ignored. For more
information on empty elements, see page 177.

sum(Matrix I, Start[, End]]) = matrix

Returns a row vector containing the sums of all
elements in the columns in Matrix1.

Start and End are optional. They specify a range of
rows.

Any void argument produces a void result. Empty
(void) elements in Matrix I are ignored. For more
information on empty elements, see page 177.

Catalog >

string(1.2345) "1.2345"
slring(1+2) "3
Catalog>

123 123
4 5 6|7ml 456
7809 7809
subMat(m1,2,1,3,2) 45
78

subMat(m1,2,2) 56
89

See (), page 168.

Catalog >

sum({1,2,3,4,5}) 15

sum({a,2~a,3-a})
"Error: Variable is not defined"

sum(seq(n,n,l,lo)) 55
sum({1,3,5,7,9},3) 21
Sum(123) [5 7 9]

456

123 [12 15 18]
Sumilg 5 6

789

123 [11 13 15]
sum|| 4 5 6,2,3

7809

134 Alphabetical Listing

sumlf() Catalog >

sumlf(List,Criterial, SumList]) = value sumIf({ 12,631,456 }’2.5<?<4.5)

Returns the accumulated sum of all elements in List 12.859874482
that meet the specified Criteria. Optionally, you can sumIf{{1,2,3,4},2<2<5,{10,20,30,40 })
specify an alternate list, sumList, to supply the 70

elements to accumulate.

List can be an expression, list, or matrix. SumList, if
specified, must have the same dimension(s) as List.

Criteria can be:

. Avalue, expression, or string. For example, 34
accumulates only those elements in List that
simplify to the value 34.

. A Boolean expression containing the symbol ?
as a placeholder for each element. For
example, <10 accumulates only those
elements in List that are less than 10.

When a List element meets the Criteria, the element
is added to the accumulating sum. If you include
sumList, the corresponding element from sumList is
added to the sum instead.

Within the Lists & Spreadsheet application, you can
use arange of cells in place of List and sumList.

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

Note: See also countlf(), page 32.

sumSeq() See (), page 168.
system() Catalog >

system(ValueI[, Value?2[, Value3], ...111)

Returns a system of equations, formatted as a list. You can also
create a system by using a template.

Alphabetical Listing 135

T

T (transpose)
Matrix IT = matrix

Returns the complex conjugate transpose of
Matrix1.

Note: You can insert this operator from the computer
keyboard by typing @ t.

tan()

tan(Valuel) = value
tan(Listl) = list

tan(ValueI) returns the tangent of the argument.

tan(ListI) returns a list of the tangents of all elements
inList].

Note: The argument is interpreted as a degree,
gradian or radian angle, according to the current angle
mode. You can use °, 9 orf to override the angle mode
setting temporarily.

tan(squareMatrix 1) = squareMatrix

Returns the matrix tangent of squareMatrix 1. This is
not the same as calculating the tangent of each
element. Forinformation about the calculation
method, refer to cos().

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

Catalog>

123 147
T

456 258

789 369

(5] key

In Degree angle mode:

] '

tan(45) 1.
tan({0,60,90}) {0.,1.73205,undef}

In Gradian angle mode:

w2} '

tan(50) L.

tan({0,50,100}) {0.,1.undef}
In Radian angle mode:

(n) 1.
tan|—

4
tan(45°) L

an {0.1.73205,0.,1.}

T T
T T
{ 3 4 ;

In Radian angle mode:

[SS RN |

1 3
tan|| 4 1
6 1

(i8]

-28.2912 26.0887 11.1142
12.1171 -7.83536 -5.48138
36.8181 -32.8063 -10.4594

136 Alphabetical Listing

tan’()
tan'(Valuel) = value
tan™(Listl) = list

tan"(ValueI) returns the angle whose tangent is
Valuel.

tan(List]) returns a list of the inverse tangents of
each element of List].

Note: The result is returned as a degree, gradian or
radian angle, according to the current angle mode
setting.

Note: You caninsert this function from the keyboard
by typingarctan(...).

tan'(squareMatrix 1) = squareMatrix

Returns the matrix inverse tangent of squareMatrix1.

This is not the same as calculating the inverse
tangent of each element. For information about the
calculation method, refer to cos().

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

tanh()
tanh(Valuel) = value
tanh(List1) = list

tanh(Value I) returns the hyperbolic tangent of the
argument.

tanh(ListI) returns a list of the hyperbolic tangents of
each element of List].

tanh(squareMatrix 1) = squareMatrix

Returns the matrix hyperbolic tangent of
squareMatrix 1. This is not the same as calculating
the hyperbolic tangent of each element. For
information about the calculation method, refer to cos

0-

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

(%) key

In Degree angle mode:

tan(1) 45

In Gradian angle mode:

tan(1) 50

In Radian angle mode:

an"({0,02,05}) {0,0.197396,0.463648 }

In Radian angle mode:

153
an’ly 5 g
6 2 1
0.083658 1.26629 0.62263
0.748539 0.630015 -0.070012
1.68608 -1.18244 0.455126
Catalog>
tanh(1.2) 0.833655
tanh({0,1}) {0.,0.761594 }

In Radian angle mode:

1 5 3
tanhf{4 5
6 21
-0.097966 0.933436 0.425972
0.488147 0.538881 -0.129382
1.28295 -1.03425 0.428817

Alphabetical Listing 137

tanh™()

tanh(Valuel) = value
tanh(Listl) = list
tanh(ValueI) returns the inverse hyperbolic tangent

of the argument.

tanh'(ListI) returns a list of the inverse hyperbolic
tangents of each element of List1.

Note: You caninsert this function from the keyboard
by typingarctanh(...).

tanh(squareMatrix 1) = squareMatrix

Returns the matrix inverse hyperbolic tangent of
squareMatrix 1. This is not the same as calculating
the inverse hyperbolic tangent of each element. For

information about the calculation method, refer to cos

0-

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

tCdf()

tCdf(/owBound,upBound,df) = number if lowBound and

Catalog >

In Rectangular complex format:

tanh(0) 0.
tanh({1,2.1,3})
{undef,0.518046-1.5708-4,0.346574-1.570

To see the entire result, press a and then use ¢ and p
to move the cursor.

In Radian angle mode and Rectangular complex
format:

1 5 3

-1
tanh7f|4 5
6 21

-0.099353+0.164058+i 0.267834—1.4908
-0.087596—0.725533+i 0.479679—0.9473(
0.511463-2.08316:i -0.878563+1.7901

To see the entire result, press .a and then use ¢ and)
to move the cursor.

Catalog >

upBound are numbers, list if lowBound and upBound are lists

Computes the Student- distribution probability between

lowBound and upBound for the specified degrees of freedom df.

For P(X <upBound), set lowBound = 9E999.

Text

TextpromptString|, DispFlag]

Catalog >

Define a program that pauses to display
each of five random numbers in a dialog

Programming command: Pauses the program and displays the box.

character string promptString in a dialog box.

When the user selects OK, program execution continues.

The optional flag argument can be any expression.

. If DispFlag is omitted or evaluates to 1, the text message

Within the Prgm...EndPrgm template,
complete each line by pressing
instead of . On the computer
keyboard, hold down Alt and press
Enter.

138 Alphabetical Listing

Text

is added to the Calculator history.
. If DispFlag evaluates to 0, the text message is not added
to the history.

If the program needs a typed response from the user, refer to
Request, page 112, or RequestStr, page 113.

Note: You can use this command within a user-defined program
but not within a function.

Catalog >

Define text_demo()=Prgm
Fori,1,5
strinfo:="Random number “ & string
(rand(i))
Text strinfo
EndFor
EndPrgm

Run the program:

text_demo()

Sample of one dialog box:

[Randam number {0 943597} |

Then See If, page 61.
tinterval Catalog >
tinterval List[, Freq[, CLevel]]

(Data list input)

tinterval X, sx, n[, CLevel]

(Summary stats input)

Computes a ¢ confidence interval. A summary of results is stored

in the stat. results variable. (See page 131.)

Forinformation on the effect of empty elements in a list, see

“Empty (Void) Elements,” page 177.

Output variable Description

stat.CLower, stat.CUpper Confidence interval for an unknown population mean

stat.x Sample mean of the data sequence from the normal random distribution

Alphabetical Listing 139

Output variable Description

stat ME Margin of error

stat.df Degrees of freedom

stat.ox Sample standard deviation

stat.n Length of the data sequence with sample mean

tinterval_2Samp Catalog >

tinterval_2Samp List1,List2[,Freql[,Freq2[,CLevel[,Pooled]]]]
(Data list input)

tinterval 2Samp x/,sx1,n1,x2,sx2,n2[,CLevel[,Pooled]]
(Summary stats input)

Computes a two-sample z confidence interval. Asummary of
results is stored in the stat. results variable. (See page 131.)

Pooled=1 pools variances; Pooled=0 does not pool variances.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.x1-x2 Sample means of the data sequences from the normal random distribution

stat ME Margin of error

stat.df Degrees of freedom

stat.x1, stat.x2 Sample means of the data sequences from the normal random distribution

stat.ox1, stat.ox2 Sample standard deviations for List [and List 2

stat.n1, stat.n2 Number of samples in data sequences

stat.sp The pooled standard deviation. Calculated when Pooled = YES

tPdf() Catalog >

tPdf(XVal,df) = number if XVal is a number, list if XValis a list

Computes the probability density function (pdf) for the Student-¢
distribution at a specified x value with specified degrees of
freedom df.

140 Alphabetical Listing

trace()
trace(squareMatrix) = value

Returns the trace (sum of all the elements on the
main diagonal) of squareMatrix.

Try

Try
blockl

Else
block2

EndTry

Executes block1 unless an error occurs. Program
execution transfers to block? if an error occurs in
block 1. System variable errCode contains the error
code to allow the program to perform error recovery.
For a list of error codes, see “Error codes and
messages,” page 191.

block1 and block2 can be either a single statement or
a series of statements separated with the “:”
character.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing (<] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

To see the commands Try, CIrErr, and PassErr in
operation, enter the eigenvals() program shown at the
right. Run the program by executing each of the
following expressions.

3
eigenvals{| 41 ,[*1 2 *3.1]
5

Note: See also CIrErr, page 25, and PassErr, page 98.

Catalog >

123 15
trace|ly 5 ¢

7 89
a:=12 12

Catalog > e[
Define progl():Pl'gm
Try
zi=z+1
Disp "z incremented."
Else
Disp "Sorry, z undefined."
EndTry
EndPrgm
Done
z::1:prog10
z incremented.
Done
DelVar z:progl()

Sorry, z undefined.

Done

Define eigenvals(a,b)=Prgm
© Program eigenvals(A,B) displays eigenvalues of
A-B

Try
Disp"A=",a
Disp"B="b
Disp""

Disp "Eigenvalues of A+B are:",eigVl(a*b)

Else
If errCode=230 Then
Disp "Error: Product of AsB must be a square

Alphabetical Listing 141

Try
matrix"
CIrErr
Else
PassErr
EndIf
EndTry

EndPrgm

tTest

tTest n0,List[,Freq[,Hypoth]]
(Data list input)

tTest n0,X,sx,n,[Hypoth]
(Summary stats input)

Performs a hypothesis test for a single unknown population
mean p when the population standard deviation o is unknown. A
summary of results is stored in the stat. results variable. (See
page 131.)

Test HO: w =u0, against one of the following:

ForH_: p<pn0, set Hypoth<0
ForH,: u# p0 (default), set Hypoth=0
ForH_: u>p0, set Hypoth>0

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Catalog >

Catalog >

Output variable Description

stat.t (X — p0) / (stdev / sqrt(n))

stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom

stat.X Sample mean of the data sequence in List

stat.sx Sample standard deviation of the data sequence

stat.n Size of the sample

142 Alphabetical Listing

tTest_2Samp Catalog >
tTest_2Samp List1,List2[,Freql[,Freq2[,Hypoth[,Pooled]]]]

(Data list input)

tTest_2Samp x/,sx 1,n1,X2,sx2,n2[,Hypoth[,Pooled]]

(Summary stats input)

Computes a two-sample ¢ test. A summary of results is stored in
the stat.results variable. (See page 131.)

Test HO: u1=p2, against one of the following:

ForH_: n1<u2, set Hypoth<0
For H,: n1# u2 (default), set Hypoth=0
ForH,: u1>u2, set Hypoth>0

Pooled=1 pools variances
Pooled=0 does not pool variances

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.t Standard normal value computed for the difference of means

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom for the t-statistic

stat.x1, stat.x2 Sample means of the data sequences in List / and List 2

stat.sx1, stat.sx2 Sample standard deviations of the data sequences in List / and List 2

stat.n1, stat.n2 Size of the samples

stat.sp The pooled standard deviation. Calculated when Pooled=1.

tvmFV() Catalog >

tvmFV(N,,PV,Pmt,[PpY],[CpY],[PmtAf]) = value tvrnFV(lZO,S,O,”SOO,lZ,12) 77641.1

Financial function that calculates the future value of
money.

Note: Arguments used in the TVM functions are
described in the table of TVM arguments, page 144.
See also amortTbl(), page 11.

Alphabetical Listing 143

tvml()
tvml(N, PV, Pmt,FV,[PpY],[CpY],[PmtAf]) = value

Financial function that calculates the interest rate per
year.

Note: Arguments used in the TVM functions are
described in the table of TVM arguments, page 144.
See also amortTbl(), page 11.

tvmN()
tvmN(, PV, Pmt,FV,[PpY],[CpY],[PmtAf]) = value

Financial function that calculates the number of
payment periods.

Note: Arguments used in the TVM functions are
described in the table of TVM arguments, page 144.
See also amortTbl(), page 11.

tvmPmt()
tvmPmt(N,L,PV,FV,[PpY],[CpY],[PmtAf]) = value

Financial function that calculates the amount of each
payment.

Note: Arguments used in the TVM functions are
described in the table of TVM arguments, page 144.
See also amortTbl(), page 11.

tvmPV()
tvmPV(N, 1, Pmt, FV,[PpY],[CpY],[PmtAf]) = value
Financial function that calculates the present value.

Note: Arguments used in the TVM functions are
described in the table of TVM arguments, page 144.
See also amortTbl(), page 11.

Catalog >

tvmI(240,100000,-1000,0,12,12) 10.5241

Catalog >

tvmN(5,0,-500,77641,12,12) 120.

Catalog >

tvmPmi(60,4,30000,0,12,12) -552.496

Catalog >

tvmPV(48,4,-500,30000,12,12) -3426.7

TVM argument* Description Data type
N Number of payment periods real number
| Annual interest rate real number

144 Alphabetical Listing

TVM argument* Description Data type

PV Present value real number

Pmt Payment amount real number

FV Future value real number

PpY Payments per year, default=1 integer > 0

CpY Compounding periods per year, default=1 integer > 0

PmtAt Payment due at the end or beginning of each period, default=end integer (0=end, 1=beginning)

*These time-value-of-money argument names are similar to the TVM variable names (such as tvm.pv

and tvm.pmt) that are used by the Calculator application’s finance solver. Financial functions, however,

do not store their argument values or results to the TVM variables.

TwoVar Catalog >

TwoVar X, Y, [Freql[, Category, Include]]

Calculates the TwoVar statistics. A summary of results is stored
in the stat. results variable. (See page 131.)

All the lists must have equal dimension except for Include.
Xand Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X
and Y data point. The default value is 1. All elements must be
integers > 0.

Category is a list of numeric category codes for the
corresponding X'and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

An empty (void) element in any of the lists X, Fregq, or Category
results in a void for the corresponding element of all those lists.
An empty element in any of the lists X7 through X20 results ina
void for the corresponding element of all those lists. For more
information on empty elements, see page 177.

Output variable Description
stat.X Mean of x values
stat.Zx Sum of x values
stat.zx2 Sum of x2 values

Alphabetical Listing

145

Output variable Description

stat.sx Sample standard deviation of x
stat.ox Population standard deviation of x
stat.n Number of data points

staty Mean of y values

stat.zy Sum of y values

stat.zy? Sum of y2 values

stat.sy Sample standard deviation of y
stat.oy Population standard deviation of y
stat.Zxy Sum of xy values

stat.r Correlation coefficient

stat.MinX Minimum of x values

stat.Q1X 1st Quartile of x

stat.MedianX Median of x

stat.Q X 3rd Quartile of x

stat.MaxX Maximum of x values

stat.MinY Minimum of y values

statQ, Y 1st Quartile of y

stat. MedY Median of y

stat.Q LY 3rd Quartile of y

stat.MaxY Maximum of y values
stat.z(x-x)2 Sum of squares of deviations from the mean of x
stat.z(y-y)?2 Sum of squares of deviations from the mean of y

U

unitV() Catalog >
unitV(Vectorl) = vector unilVf[l 5 1])
Returns either a row- or column-unit vector, [0.408248 0.816497 0.408248]
depending on the form of Vectorl. 1 0.267261
unitV| =
Vectorl must be either a single-row matrix or a single- 2 0.534522
0.801784

column matrix.

146 Alphabetical Listing

unLock Catalog >

unLock Varl[, Var2][, Var3] ... =65 65
nLock Var.
un-ock var. Lock a Done
Unlocks the specified variables or variable group. getLockInfo(a) 1
Locked variables cannot be modified or deleted. 75 "Error: Variable is locked. "
See Lock, page 76, and getLockInfo(), page 57. DelVar a "Error: Variable is locked."
Unlock a Done
a:=75 75
DelVar a Done

"4

varPop() Catalog >
varPop(List|, freqList]) = expression varPop({5,10,15,20,25,30}) 72.9167

Returns the population variance of List.

Each frreqList element counts the number of
consecutive occurrences of the corresponding
element in List.

Note: List must contain at least two elements.

If an element in either list is empty (void), that
element is ignored, and the corresponding element in
the other list is also ignored. For more information on
empty elements, see page 177.

varSamp() Catalog >
varSamp(List[, freqList]) = expression varSamp({ 1,2,5,6,3,2 }) 31
Returns the sample variance of List. 2
Each freqList element counts the number of VarsamP({ 1’3’5}’ { 46,2 }) 88
33

consecutive occurrences of the corresponding
element in List.

Note: List must contain at least two elements.

If an element in either list is empty (void), that
element is ignored, and the corresponding element in
the other list is also ignored. For more information on

Alphabetical Listing 147

varSamp()
empty elements, see page 177.
varSamp(Matrix I[, freqMatrix]) = matrix

Returns a row vector containing the sample variance
of each columnin Matrix1.

Each freqMatrix element counts the number of
consecutive occurrences of the corresponding
element in Matrix1.

If an element in either matrix is empty (void), that
element is ignored, and the corresponding element in
the other matrix is also ignored. For more information
on empty elements, see page 177.

Note: Matrix I must contain at least two rows.

w

warnCodes ()
warnCodes(Expr1, StatusVar) = expression

Evaluates expression Exprl, returns the result, and
stores the codes of any generated warnings in the
StatusVar list variable. If no warnings are generated,
this function assigns StatusVar an empty list.

Exprl can be any valid TI-Nspire™ or TI-Nspire™ CAS
math expression. You cannot use a command or
assignment as Exprl.

StatusVar must be a valid variable name.

For a list of warning codes and associated messages,
see page 191.

when()

when(Condition, trueResult [, false Resulf][,
unknownResult]) = expression

Returns trueResult, falseResult, or unknownResult,
depending on whether Condition is true, false, or
unknown. Returns the input if there are too few

Catalog >

1 25 [475 1.03 4]
varSamp 30 1
5.7 3]
1.1 22][6 3
varSamp|| 3 4 571h|2 4
23 43|[5 1
[3.91731 2.08411]

Catalog >

2
wamCodesl solve(sinl 10~x]=x— X|,warn
| | x

x=-0.84232 or x=-0.706817 or x=-0.285234 or x=(
warn {10007,10009 }

To see the entire result, press .a and then use ¢ and p
to move the cursor.

Catalog >

148 Alphabetical Listing

when()

arguments to specify the appropriate result.

Catalog >

Omit both falseResult and unknownResult tomakean when(x<0,x+3)jx=5 undef

expression defined only in the region where Condition
is true.

Use an undef false Result to define an expression that
graphs only on an interval.

when() is helpful for defining recursive functions. when(n>0,n-factoralln—1),1) - factoralln)
Done
factoral(3) 6
3! 6
While Catalog >

While Condition
Block
EndWhile

Executes the statements in Block as long as
Condition is true.

Block can be either a single statement or a sequence

Define sum_of_recip(n): Func

Local i,tempsum
1-i

0— tempsum
While i=n

1
tempsum-~+— — tempsum
i

X

i+tl->i
of statements separated with the “:” character. EndWhile
Note for entering the example: In the Calculator Eeg;n fempsitn

ndarunc

application on the handheld, you can enter multi-line Done
definitions by pressing (<] instead of at the end 1) "
of each line. On the computer keyboard, hold down Alt sum_of_recip o
and press Enter.
xor Catalog >
BooleanExpr1 xor BooleanExpr2 returns Boolean true Xor true false
expressionBooleanList1 5>3 xor 3>5 true
xor BooleanList2 returns Boolean
listBooleanMatrix 1

xor BooleanMatrix2 returns Boolean matrix

Returns true if BooleanExprl is true and
BooleanExpr2 is false, or vice versa.

Alphabetical Listing 149

xor

Returns false if both arguments are true or if both are
false. Returns a simplified Boolean expression if
either of the arguments cannot be resolved to true or
false.

Note: See or, page 96.
Integerl xor Integer2=> integer

Compares two real integers bit-by-bit using an xor
operation. Internally, both integers are converted to
signed, 64-bit binary numbers. When corresponding
bits are compared, the result is 1 if either bit (but not
both) is 1; the result is 0 if both bits are 0 or both bits
are 1. The returned value represents the bit results,
and is displayed according to the Base mode.

You can enter the integers in any number base. For a
binary or hexadecimal entry, you must use the Ob or

Oh prefix, respectively. Without a prefix, integers are
treated as decimal (base 10).

If you enter a decimal integer that is too large for a
signed, 64-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range. For more information, see
»Base2, page 20.

Note: See or, page 96.

Z

zZlnterval

zinterval o, List[,Freq[,CLevel]]
(Data list input)

zinterval 6,X,n [,CLevel]

(Summary stats input)

Catalog >

In Hex base mode:

Important: Zero, not the letter O.

Oh7AC36 xor Oh3D5F 0h79169

In Bin base mode:

0b100101 xor 0b100 0b100001

Note: A binary entry can have up to 64 digits (not
counting the Ob prefix). A hexadecimal entry can have
up to 16 digits.

Catalog >

Computes a z confidence interval. Asummary of results is

stored in the stat.results variable. (See page 131.)

For information on the effect of empty elements in a list, see

“Empty (Void) Elements,” page 177.

150 Alphabetical Listing

Output variable

Description

stat.CLower, stat.CUpper

Confidence interval for an unknown population mean

statx Sample mean of the data sequence from the normal random distribution
stat ME Margin of error

stat.sx Sample standard deviation

stat.n Length of the data sequence with sample mean

stat.c Known population standard deviation for data sequence List

zinterval_1Prop

Catalog >

zinterval_1Prop x,n [,CLevel]

Computes a one-proportion z confidence interval. A summary of
results is stored in the stat. results variable. (See page 131.)

X is anon-negative integer.

For information on the effect of empty elements in a list, see

“Empty (Void) Elements,” page 177.

Output variable

Description

stat.CLower, stat.CUpper

Confidence interval containing confidence level probability of distribution

stat.p The calculated proportion of successes
stat ME Margin of error
stat.n Number of samples in data sequence

zinterval_2Prop

Catalog >

zinterval_2Propx/,nl,x2,n2[,CLevel]

Computes a two-proportion z confidence interval. A summary of
results is stored in the stat. results variable. (See page 131.)

x1 and x2 are non-negative integers.

For information on the effect of empty elements in a list, see

“Empty (Void) Elements,” page 177.

Output variable

Description

stat.CLower, stat.CUpper

Confidence interval containing confidence level probability of distribution

stat.p Diff

The calculated difference between proportions

Alphabetical Listing 151

Output variable Description

stat ME Margin of error

stat.p1 First sample proportion estimate

stat[MATRIX]p 2 Second sample proportion estimate

stat.n1 Sample size in data sequence one

stat.n2 Sample size in data sequence two

zinterval_2Samp Catalog >
zinterval_2Samp 0,0, JListl,List2[,Freql[,Freq2,[CLevel]]]

(Data list input)

zinterval_2Samp 01,62,i1,n1,i2,112[, CLevel]

(Summary stats input)

Computes a two-sample z confidence interval. A summary of

results is stored in the stat. results variable. (See page 131.)

For information on the effect of empty elements in a list, see

“Empty (Void) Elements,” page 177.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution
statx1-x2 Sample means of the data sequences from the normal random distribution
stat ME Margin of error

statX1, statx2 Sample means of the data sequences from the normal random distribution
stat.ox1, stat.ox2 Sample standard deviations for List / and List 2

stat.n1, stat.n2 Number of samples in data sequences

stat.r1, stat.r2 Known population standard deviations for data sequence List / and List 2
zTest Catalog >

zTest u0,0,List,[Freq[,Hypoth]]
(Data list input)

zTest p0,c,X,n[, Hypoth]
(Summary stats input)

Performs a z test with frequency freglist. A summary of results

152 Alphabetical Listing

ZTest Catalog >
is stored in the stat.results variable. (See page 131.)
Test HO: u =0, against one of the following:

ForH_: p<pn0, set Hypoth<0
ForH_: n#p0 (default), set Hypoth=0
ForH,: u>p0, set Hypoth>0

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.z (X—n0) / (o /sqrt(n))

stat.P Value Least probability at which the null hypothesis can be rejected

statX Sample mean of the data sequence in List

stat.sx Sample standard deviation of the data sequence. Only returned for Data input.

stat.n Size of the sample

ZTest_1Prop Catalog > HE
Output variable Description

stat.p0 Hypothesized population proportion

stat.z Standard normal value computed for the proportion

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.p Estimated sample proportion

stat.n Size of the sample

zTest_2Prop Catalog >

zTest_2Prop x/,nl,x2,n2[,Hypoth]

Computes a two-proportion z test. Asummary of results is
stored in the stat. results variable. (See page 131.)

x1 and x2 are non-negative integers.

Test HO: pl =p2, against one of the following:

Alphabetical Listing 153

zTest_2Prop

ForH_: pl >p2, set Hypoth>0
ForH_: pI #p2 (default), set Hypoth=0
ForH,:p < p0, set Hypoth<0

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Catalog >

Output variable Description

stat.z Standard normal value computed for the difference of proportions
stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.p1 First sample proportion estimate

stat.p2 Second sample proportion estimate

stat.p Pooled sample proportion estimate

stat.n1, stat.n2 Number of samples taken in trials 1 and 2

zTest_2Samp

zTest_2Sampo,,0,,List],Lisi2[,Freql[,Freq2[,Hypoth]]]
(Data list input)

zTest_2Samp 61,62,i1,n1,i2,112[,Hypoth]

(Summary stats input)

Computes a two-sample z test. A summary of results is stored in
the stat.results variable. (See page 131.)

Test HO: u1=p2, against one of the following:

ForH_: n1<u2, set Hypoth<0
ForH,: n1#p2 (default), set Hypoth=0
ForH, :p1>p2, Hypoth>0

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Catalog >

Output variable Description
stat.z Standard normal value computed for the difference of means
stat.PVal Smallest level of significance at which the null hypothesis can be rejected

statx1, stat.x2

Sample means of the data sequences in List/ and List2

154 Alphabetical Listing

Output variable

Description

stat.sx1, stat.sx2

Sample standard deviations of the data sequences in List/ and List2

stat.n1, stat.n2

Size of the samples

Alphabetical Listing 155

Symbols

+ (add)
Valuel + Value2 = value

Returns the sum of the two arguments.

List] + List2 = list
Matrix1 + Matrix2 = matrix

Returns a list (or matrix) containing the sums of
corresponding elements in List] and List2 (or
Matrix1 and Matrix?2).

Dimensions of the arguments must be equal.
Value + List] = list

List] + Value = list

Returns a list containing the sums of Value and each

element in List1.
Value + Matrix 1 = matrix

Matrix1 + Value = matrix

Returns a matrix with Value added to each element
on the diagonal of Matrix1. Matrix I must be square.

Note: Use .+ (dot plus) to add an expression to each

element.

— (subtract)
Value I-Value2 = value

Returns Value I minus Value?.

List] —List2= list

Matrix1 —Matrix2 = matrix

Subtracts each element in List2 (or Matrix2) from the

corresponding element in List] (or Matrix 1), and

(#] key
56 56
56+4 60
60+4 64
6d+4 68
68+4 72

25Xt
2

{22,3.14159,1.5708 }

{ 10,5,3} N
2

{10,5,1.5708}

1+12

{32,8.14159,3.14159}

15+{10,15,20} {25,3035}
{10,15,20}+15 {253035}
2041 2J [21 2J
34 3 24
(=] key
6-2 4
2.61799

X

12,-1.85841,0.
{22,;:,%H 10,5,%} { }

[3 a1 2]

[2 2]

156 Symbols

— (subtract) [=) key
returns the results.

Dimensions of the arguments must be equal.

Value — List]l = list 157{10,15’20} {5’0,75
List] — Value = list {101520}-15 {505

Subtracts each ListI element from Value or subtracts
Value from each List element, and returns a list of
the results.

Value — Matrix 1 = matrix 201 2 [19 ’ZJ

Matrix 1 — Value = matrix 3 4 316

Value — Matrix I returns a matrix of Value times the
identity matrix minus Matrix1. MatrixI must be
square.

Matrix 1 — Value returns a matrix of Value times the
identity matrix subtracted from Matrix1. Matrix1
must be square.

Note: Use .— (dot minus) to subtract an expression
from each element.

+(muttiply) (x] key

Value I+Value2 = value 2-3.45 6.9

Returns the product of the two arguments.

Listl+List2 = list {1.,2,3}'{4,5,6} {4,10,18}
Returns a list containing the products of the
corresponding elements in List/ and List2.

Dimensions of the lists must be equal.

Matrix 1-Matrix2 = matrix

Lo al]7 8 [42 48 }
Returns the matrix product of Matrix I and Matrix2. [4 5 6]. 78 105 120
7 8§
The number of columns in Matrix I must equal the
number of rows in Matrix2.
7{456} {12.5664,15.708,18.8496 }

Value <List] = list
Listl+Value = list

Returns a list containing the products of Value and

Symbols 157

+(multiply)

each element in List1.

Value Matrix1 = matrix
Matrix1+Value = matrix

Returns a matrix containing the products of Value and
each element in Matrix1.

Note: Use .+(dot multiply) to multiply an expression by
each element.

/(divide)

Valuel/ Value2 = value

Returns the quotient of Value I divided by Value?2.
Note: See also Fraction template, page 5.
Listl/List2 = list

Returns a list containing the quotients of List/ divided
by List2.

Dimensions of the lists must be equal.
Value/Listl = list
Listl/ Value = list

Returns a list containing the quotients of Value
divided by ListI or List1 divided by Value.

Value/Matrix 1 = matrix
Matrix1/ Value = matrix

Returns a matrix containing the quotients of Matrix1/
Value.

Note: Use./ (dot divide) to divide an expression by
each element.

* (power)
Valuel * Value2= value

List] * List2 = list

(x] key

[1 2].0_01 10.01 0.02]
34 0.03 0.04
6-identity(3) 6 0 0
060
006
(] key
2 57971
345
{123} {0.25,3;}
{456} 5°2
6 {2,1,2.44940}
Bode]
{79.2} {LL_}
7.9-2 18714763
[7 9 2] 11 L}
7-9-2 18 14 63
(~] key
2 16
{2’4’6}{1,2,3} {2,16,216}

158 Symbols

* (power) key

Returns the first argument raised to the power of the
second argument.

Note: See also Exponent template, page 5.

For alist, returns the elements in List/ raised to the
power of the corresponding elements in List2.

In the real domain, fractional powers that have
reduced exponents with odd denominators use the
real branch versus the principal branch for complex

mode.
Value * Listl = list L1123} {3.14159,9.8696,0.032252 }
Returns Value raised to the power of the elements in
Listl.
List] » Value = list -2
{1,23,4} {l,l,l,L}
Returns the elements in List] raised to the power of 4916
Value.
squareMatrix1*™ integer = matrix 1 22 [7 10
Returns squareMatrix I raised to the integer power. 3 4 15 22
squareMatrix I must be a square matrix. 1 2|1 21
34 31
If integer =—1, computes the inverse matrix. 2 2
If integer <—1, computes the inverse matrix to an 12 2 11 -5
appropriate positive power. 34 P
507
4 4
x2 (square)] key
Value 12= value 2 16
Returns the square of the argument. {2 4 6}2 {4,16,36}
ListI2= list 5 4 6] 40 64 88
Returns a list containing the squares of the elements 35 7 49 79 109
inList]. 468 58 94 130
squareMatrix 12 = matrix 246 A2 4 16 36
35 17| 9 25 49
Returns the matrix square of squareMatrix 1. This is 46 8 16 36 64

not the same as calculating the square of each
element. Use ."2 to calculate the square of each
element.

Symbols 159

.+ (dot add)
Matrix1 .+ Matrix2 = matrix
Value .+ Matrix 1= matrix

Matrix 1.+Matrix2 returns a matrix that is the sum of
each pair of corresponding elements in Matrix I and
Matrix2.

Value .+ Matrix I returns a matrix that is the sum of
Value and each element in Matrix 1.

.”(dot subt.)
Matrix1 .— Matrix2= matrix
Value .— Matrix1 = matrix

Matrix1.— Matrix2 returns a matrix that is the
difference between each pair of corresponding
elements in Matrix1 and Matrix2.

Value .— Matrix I returns a matrix that is the
difference of Value and each element in Matrix1.

.+(dot mult.)
Matrix1 .« Matrix2= matrix
Value .» Matrix 1 = matrix

Matrix1.» Matrix2 returns a matrix that is the product
of each pair of corresponding elements in Matrix 1
and Matrix2.

Value .« Matrix I returns a matrix containing the
products of Value and each element in Matrix 1.

./ (dot divide)
Matrix 1./ Matrix2 = matrix
Value ./ Matrix 1= matrix

Matrix1 ./ Matrix2 returns a matrix that is the
quotient of each pair of corresponding elements in
Matrix1 and Matrix2.

Value ./ Matrix I returns a matrix that is the quotient
of Value and each element in Matrix1.

[keys

1 2] +[10 30 11 32
3 4] [20 40 23 44
5 +[10 30 15 35

20 40 25 45

[E] keys

1 2(|10 20 9 -18
3 4 30 40 27 -36
5 —[10 20 5 -15
30 40 25 35
[Jx] keys

1 2|.]10 20 10 40
3 4 30 40 90 160
5. [10 20 50 100
30 40 150 200
[J(=] keys

B

(o x)

— —
o|"‘o|"‘

® |~ u = 5|"‘5|’_‘

160 Symbols

. (dot power)
Matrix1 .* Matrix2 = matrix
Value . ™ Matrix 1= matrix

Matrix 1.* Matrix2 returns a matrix where each
element in Matrix2 is the exponent for the
corresponding element in Matrix1.

Value .* Matrix I returns a matrix where each
element in Matrix1 is the exponent for Value.

— (negate)

~Valuel = value
—List] = list
—Matrix1 = matrix

Returns the negation of the argument.

For alist or matrix, returns all the elements negated.

If the argument is a binary or hexadecimal integer, the

negation gives the two’s complement.

% (percent)
Value 1% = value
List1% = list

Matrix 1% = matrix

art Qumem‘
Returns 100

For a list or matrix, returns a list or matrix with each

element divided by 100.

= (equal)

Expri=Expr2 = Boolean expression

(=] keys

[1 2} A [0 2] 1 4
34/ [3 11 L
4

5./\[0 2} 1 25
31 125 L

5

(@) key

-2.43 -2.43

{-1,041.2619} {1.-0.4-1.2e19}

In Bin base mode:

Important: Zero, not the letter O.

-0b100101
Obl111111111111111111111111111111»

To see the entire result, press a and then use ¢and p
to move the cursor.

(er])[@] keys

Press Ctrl+Enter[ctr][enter] (Macintosh®: 3 +Enter)
to evaluate:

13% 0.13

Press Ctrl+Enter[ctr][enter] (Macintosh®: 3 +Enter)
to evaluate:

({1,10,100})% {0.01,01,1.}

(=] key

Example function that uses math test symbols: =, #,
< 5>,

Symbols 161

= (equal)
ListI=List2 = Boolean list
Matrix I=Matrix2 = Boolean matrix

Returns true if Expr1 is determined to be equal to
Expr2.

Returns false if Exprl is determined to not be equal to
Expr2.

Anything else returns a simplified form of the
equation.

For lists and matrices, returns comparisons element
by element.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing [+] instead of at the end
of each line. On the computer keyboard, hold down Alt
and press Enter.

(not equal)
Expri#Expr2 = Boolean expression
Listl#List2 = Boolean list

Matrix I#Matrix2 = Boolean matrix

(=] key

Define g(x):Func
If x<-5 Then
Return 5
ElseIf x>-5 and x<0 Then
Return —x
ElseIf x=0 and x#10 Then
Return x
ElseIf x=10 Then
Return 3
EndIf
EndFunc
Done

Result of graphing g(x)

6 1 5

-2
CIRE

(en](=] keys

See “=" (equal) example.

Returns true if Expr is determined to be not equal to Expr2.

Returns false if Exprl is determined to be equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing

/=

162 Symbols

< (less than) (etn][=] keys

Expri<Expr2 = Boolean expression See “=" (equal) example.
ListI<List2 = Boolean list

Matrix 1<Matrix2 = Boolean matrix

Returns true if Expr1 is determined to be less than Expr2.

Returns false if Expr1 is determined to be greater than or equal to
Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

< (less or equal) (en](=] keys

Expri<Expr2 = Boolean expression See “=" (equal) example.
ListI<List2 = Boolean list
Matrix1 <Matrix2 = Boolean matrix

Returns true if Expr1 is determined to be less than or equal to
Expr2.

Returns false if Exprl is determined to be greater than Expr2.
Anything else returns a simplified form of the equation.
For lists and matrices, returns comparisons element by element.

Note: You caninsert this operator from the keyboard by typing
<=

> (greater than) (en](=] keys

ExprI>Expr2 = Boolean expression See “=" (equal) example.
List1>List2 = Boolean list

Matrix I>Matrix2 = Boolean matrix

Returns true if Exprl is determined to be greater than Expr2.

Returns false if Exprl is determined to be less than or equal to
Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Symbols

163

> (greater or equal) (] (=] keys
Expri>Expr2 = Boolean expression See “=" (equal) example.
ListI>List2 = Boolean list

Matrix1 >Matrix2 = Boolean matrix

Returns true if Expr! is determined to be greater than or equal to
Expr2.

Returns false if Expr1 is determined to be less than Expr2.
Anything else returns a simplified form of the equation.
For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing

>=
= (logical implication) [en](=] keys
BooleanExprl = BooleanExpr2 returns Boolean 533 or 355 true
expression
s 5>3 = 3»5 false

BooleanList] = BooleanList2 returns Boolean list

Jor4d 7
BooleanMatrix1 = BooleanMatrix2 returns Boolean 5 _ 4 4
matrix

{123} er {321} {323}
Integerl = Integer?2 returns Integer {l 5 3} - {3 5 1} {_1 1 _3}

Evaluates the expression not <argument1> or
<argument2> and returns true, false, or a simplified
form of the equation.

For lists and matrices, returns comparisons element
by element.

Note: You can insert this operator from the keyboard
by typing =>

164 Symbols

© (logical double implication, XNOR)

BooleanExprl € BooleanExpr2 returns Boolean
expression

BooleanListl < BooleanList2 returns Boolean list

BooleanMatrix 1 < BooleanMatrix2 returns Boolean

matrix
Integerl & Integer?2 returns Integer

Returns the negation of an XOR Boolean operation on
the two arguments. Returns true, false, or a simplified
form of the equation.

For lists and matrices, returns comparisons element
by element.

Note: You can insert this operator from the keyboard
by typing <=>

| (factorial)

Value ' = value

List1! = list

Matrix IV = matrix

Returns the factorial of the argument.

For a list or matrix, returns a list or matrix of factorials
of the elements.

& (append)
Stringl & String2 = string

Returns a text string that is String2 appended to
Stringl.

5>3 xor 35 true
5»3 & 335 false
3 xor 4 7
34 -8
{1,23} %or {321} {202}

{123} o {321}

key

51 120
({543} {120,246}
L3 b
34 6 24
(o] (=) keys

"Hello "&"Nick"

"Hello Nick"

Symbols 165

d() (derivative)

d(Exprl, Var], Order])| Var=Value = value
d(Exprl, Varl, Order]) = value

d(List1, Var], Order]) = list

d(Matrix 1, Varl, Order]) = matrix

Except when using the first syntax, you must store a
numeric value in variable Var before evaluating d().
Refer to the examples.

d() can be used for calculating first and second order
derivative at a point numerically, using auto
differentiation methods.

Order, if included, must be=1 or 2. The default is 1.

Note: You caninsert this function from the keyboard
by typingderivative (...).

Note: See also First derivative, page 9 or
Second derivative, page 9.

Note: The d() algorithm has a limitation: it works
recursively through the unsimplified expression,
computing the numeric value of the first derivative
(and second, if applicable) and the evaluation of each
subexpression, which may lead to an unexpected
result.

Consider the example on the right. The first derivative
of x+(x"2+x)"(1/3) at x=0 is equal to 0. However,
because the first derivative of the subexpression
(x"2+x)*(1/3) is undefined at x=0, and this value is
used to calculate the derivative of the total
expression, d() reports the result as undefined and
displays a warning message.

If you encounter this limitation, verify the solution
graphically. You can also try using centralDiff().

J() (integral)
[(Exprl, Var, Lower,Upper) = value

Returns the integral of Expr! with respect to the
variable Var from Lower to Upper. Can be used to
calculate the definite integral numerically, using the

Catalog >

—(‘I|)|x:0 undef
d undef
X —O-EUXU
ve3 A ({23 4]) {627,108}
1 undef
4 X (12+x) ’ [x=0
X
1
centralDif; x-(x2+x) : JXx=0
0.000033
Catalog > HE
1 0.333333
x2 dx
0

166 Symbols

J() (integral)
same method as nint().

Note: You caninsert this function from the keyboard
by typingintegral(...).

Note: See also nint(), page 91, and Definiteintegral
template, page 10.

() (square root)
\(Valuel) = value
\(List1) = list

Returns the square root of the argument.

For alist, returns the square roots of all the elements
inListl.

Note: You can insert this function from the keyboard
by typing sqrt(...)

Note: See also Square root template, page 5.

11() (prodSeq)
I(Exprl, Var, Low, High) = expression

Note: You can insert this function from the keyboard
by typing prodseq(...) .

Evaluates Expr1 for each value of Varfrom Low to
High, and returns the product of the results.

Note: See also Product template (IT), page 9.

TI(Exprl, Var, Low, Low-1) = 1

I(Exprl, Var, Low, High) = 1/TI(Exprl, Var,
High+1, Low-1)if High < Low-1

The product formulas used are derived from the
following reference:

Ronald L. Graham, Donald E. Knuth, and Oren
Patashnik. Concrete Mathematics: A Foundation

Catalog >

[etn]) 2] keys

=1

2

{9,2,4}

{3,1.41421,2}

Catalog >
5 L
(l 120
n
n=1
5
1 {L,lzogz}
[
n
n=1
3 1
(k)
k=4

Symbols 167

T1() (prodSeq)

Jfor Computer Science. Reading, Massachusetts:
Addison-Wesley, 1994.

() (sumSeq)
X(Exprl, Var, Low, High) = expression

Note: You can insert this function from the keyboard
by typing sumSeq(...) .

Evaluates Expr] for each value of Var from Low to
High, and returns the sum of the results.

Note: See also Sum template, page 9.
XExprl, Var, Low, Low-1)= 0
X(Exprl, Var, Low, High) = 1

XExprl, Var, High+1, Low—1) if High < Low-1

The summation formulas used are derived from the
following reference:

Ronald L. Graham, Donald E. Knuth, and Oren
Patashnik. Concrete Mathematics: A Foundation
for Computer Science. Reading, Massachusetts:
Addison-Wesley, 1994.

ZInt()

SInt(NPmt1, NPmt2, N, I, PV ,[Pmt], [FV], [PpY],
[CpY], [PmtA1], [roundValuel) = value

SInt(NPmt1,NPmt2,amortTable) = value

Amortization function that calculates the sum of the
interest during a specified range of payments.

Catalog >

1 6
1
k
k=4
1 4 1
1), ‘ ‘ 1 1
k k
k=4 k=2
Catalog>
5 137
E 1 60
n
n=1
3 0
g (K]
k=4
1 5
E (k)
k=4
1 4 4
E (k)+ g (k]
k=4 k=2
Catalog > [
TInt(1,3,12,4.75,20000,,12,12) -213.48

168 Symbols

Zint()

NPmt1 and NPmt2 define the start and end

boundaries of the payment range.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are

described in the table of TVM arguments, page 144.

. If you omit Pmt, it defaults to Pmt=tvmPmt
(N,LPV,FV,PpY,CpY,PmtAt).

. If you omit FV, it defaults to F/=0.

. The defaults for PpY, CpY, and PmtAt are the

same as for the TVM functions.

roundValue specifies the number of decimal places
for rounding. Default=2.

SInt(NPmt 1, NPmt2,amortTable) calculates the sum
of the interest based on amortization table
amortTable. The amortTable argument must be a
matrix in the form described under amortTbl(), page
11.

Note: See also =Prn(), below, and Bal(), page 19.

>Pmn()

SPr(NPmtl, NPmt2, N, I, PV, [Pmt], [FV], [PpY],
[CpY], [PmtA1], [roundValuel) = value

SPm(NPmtl, NPmt2, amortTable) = value

Amortization function that calculates the sum of the
principal during a specified range of payments.

NPmtI and NPmt2 define the start and end
boundaries of the payment range.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are

described in the table of TVM arguments, page 144.

. If you omit Pmt, it defaults to Pmt=tvmPmt
(N,L,PV,FV,PpY,CpY,PmtAt).

. If you omit FV, it defaults to F7’=0.

. The defaults for PpY, CpY, and PmtAt are the
same as for the TVM functions.

roundValue specifies the number of decimal places
for rounding. Default=2.

Catalog >

tbl:=amortTbl(12,12,4.75,20000,,12,12)

0o o 0. 20000. |

1 7749 -1632.43 18367.6

2 -T117 -1638.75 16728.8

3 -64.82 -1645.1 15083.7

4 3844 -1651.48 13432.2

5 -52.05 -1657.87 11774.4

6 -45.62 -16643 10110.1

7 3917 -1670.75 8439.32

8 327 -1677.22 6762.1

9 262 -1683.72 5078.38

10 -19.68 -1690.24 3388.14

11 -13.13 -1696.79 1691.35

|12 -6.55 -1703.37 -12.02 |
TInt(1,3,61) 213.48
Catalog>
TPm(1,3,12,4.75,20000,,12,12) -4916.28

tbl:=amortTb](12,12,4.75,20000,,12,12)

O 00 3 Ul = W= O

— =
—_ O

12

0.
-77.49
-71.17
~64.82
-58.44
-52.05
-45.62
-39.17

-32.7
-26.2
-19.68
-13.13
-6.55

0.
-1632.43
-1638.75

-1645.1
-1651.48
-1657.87

-1664.3
-1670.75
-1677.22
-1683.72
-1690.24
-1696.79
-1703.37

20000.
18367.57
16728.82
15083.72
13432.24
11774.37
10110.07
8439.32
6762.1
5078.38
3388.14
1691.35
-12.02

=Pm(1,3,tbl)

-4916.28

Symbols 169

>Prn()

SPm(NPmt 1, NPmt2,amortTable) calculates the sum
of the principal paid based on amortization table
amortTable. The amortTable argument must be a
matrix in the form described under amortTbl(), page
11.

Note: See also XInt(), above, and Bal(), page 19.

(indirection)

#varNameString

Refers to the variable whose name is varNameString.

This lets you use strings to create variable names
from within a function.

E (scientific notation)
mantissaEexponent

Enters a number in scientific notation. The number is
interpreted as mantissa x 10exponent,

Hint: If you want to enter a power of 10 without
causing a decimal value result, use 10%integer.

Note: You caninsert this operator from the computer
keyboard by typing QE. for example, type 2. 3RE4 to
enter 2.3E4.

9 (gradian)
Expri9= expression
List]9= list

Matrix 19 = matrix

Catalog >

(] () keys

xyz:=12 12

#(nxu&vlyw&nzu) 12
Creates or refers to the variable xyz .

10->r 10

" s] npen

#sl 10

Returns the value of the variable (r) whose name is
stored in variable s1.

(e key
23000. 23000.
2300000000.+4.1£15 4.1€15
3.10% 30000
key

In Degree, Gradian or Radian mode:

170 Symbols

9 (gradian) key
cos(509) 0.707107

This function gives you a way to specify a gradian COS({ 0,1009,200¢ }) { 1,0.,-1. }
angle while in the Degree or Radian mode.

In Radian angle mode, multiplies Expr1 by 7/200.

In Degree angle mode, multiplies Expr1 by g/100.

In Gradian mode, returns Exprl unchanged.

Note: You caninsert this symbol from the computer
keyboard by typing @g.

T(radian) key
Valuel" = value In Degree, Gradian or Radian angle mode:

ListI" = list ks 0.707107
cos
4r

Matrix I" = matrix

This function gives you a way to specify a radian cosld o [=) *(n)’ { 1,0.965926,-1. }
angle while in Degree or Gradian mode. ’

In Degree angle mode, multiplies the argument by
180/x.

In Radian angle mode, returns the argument
unchanged.

In Gradian mode, multiplies the argument by 200/x.

Hint: Use ' if you want to force radians in a function
definition regardless of the mode that prevails when
the function is used.

Note: You can insert this symbol from the computer
keyboard by typing @r.

° (degree) key

Value 1° = value In Degree, Gradian or Radian angle mode:

Listl° = list cos(45°) 0.707107

Matrix1° = matrix)
In Radian angle mode:

This function gives you a way to specify a degree
angle while in Gradian or Radian mode.

Symbols 171

° (degree) key

In Radian angle mode, multiplies the argument by I
/180 cos|{ 0,—,90°,30.12°
’ 4
In Degree angle mode, returns the argument { 1,0.707107,0.,0.864976 }
unchanged.

In Gradian angle mode, multiplies the argument by

10/9.

Note: You can insert this symbol from the computer

keyboard by typing @d.

°,'," (degree/minute/second) [etn]) (=) keys
dd°mm'ss.ss" = expression In Degree angle mode:

dd A positive or negative number 25°13'17.5" 25.2215
mm A non-negative number 2503() 51
ss.ss A non-negative number ?

Returns dd+(mm/60)+(ss. ss/3600).
This base-60 entry format lets you:

. Enter an angle in degrees/minutes/seconds
without regard to the current angle mode.

. Enter time as hours/minutes/seconds.

Note: Follow ss.ss with two apostrophes ("), not a
quote symbol (").

Z (angle) (et (@) keys
[Radius, £0_Angle] = vector In Radian mode and vector format set to:

(polar input) rectangular

[Radius, £6_Angle,Z_Coordinate] = vector [5 £.60° L45°]

(cylindrical input) [1.76777 3.06186 3.53553]
[Radius, £0_Angle, £6_Angle] = vector

(spherical input) cylindrical

Returns coordinates as a vector depending on the
Vector Format mode setting: rectangular, cylindrical,
or spherical.

[5 £60° £45°]
[353553 £.1.0472 3.53553]

Note: You can insert this symbol from the computer
keyboard by typing @<. spherical

172 Symbols

Z (angle)

(Magnitude £ Angle) = complexValue
(polar input)

Enters a complex value in (r £ 0) polar form. The
Angle is interpreted according to the current Angle
mode setting.

_ (underscore as an empty element)

100

10" (Valuel) = value

10* (List]) = list

Returns 10 raised to the power of the argument.

Foralist, returns 10 raised to the power of the
elements in List].

10" (squareMatrix 1) = squareMatrix

Returns 10 raised to the power of squareMatrix1.
This is not the same as calculating 10 raised to the
power of each element. For information about the
calculation method, refer to cos().

squareMatrix I must be diagonalizable. The result
always contains floating-point numbers.

~1 (reciprocal)

Valuel = value

List1 = list

Returns the reciprocal of the argument.

For alist, returns the reciprocals of the elements in
Listl.

(o) keys

[5 260° £45°]
[5. £1.0472 £0.785398]

In Radian angle mode and Rectangular complex
format:

s:3.i-10 £ E) 2.07107-4.07107-i
4

See “Empty (Void) Elements,”

page 177.

Catalog>

101.5 31.6228
153
4 21
10 6 21

1.14336€7 8.17155e6 6.67589e6

9.95651e6 7.11587e6 5.81342€6

7.65298e6 5.46952E6 4.46845e6

Catalog>

(3'1)*1 0.322581

Symbols 173

A1 (reciprocal)
squareMatrix1 "7 = squareMatrix
Returns the inverse of squareMatrix 1.

squareMatrix 1 must be a non-singular square matrix.

| (constraint operator)
Expr| BooleanExpri[and BooleanExpr2]...
Expr| BooleanExpr1[orBooleanExpr2]...

The constraint (") symbol serves as a binary
operator. The operand to the left of | is an expression.
The operand to the right of | specifies one or more
relations that are intended to affect the simplification
of the expression. Multiple relations after | must be
joined by logical “and” or “or” operators.

The constraint operator provides three basic types of
functionality:

. Substitutions
. Interval constraints

. Exclusions

Substitutions are in the form of an equality, such as
x=3 or y=sin(x). To be most effective, the left side
should be a simple variable. Expr | Variable = value
will substitute value for every occurrence of Variable
in Expr.

Interval constraints take the form of one or more
inequalities joined by logical “and” or “or” operators.
Interval constraints also permit simplification that
otherwise might be invalid or not computable.

Exclusions use the “not equals” (/= or #) relational
operator to exclude a specific value from
consideration.

Catalog >

L o]t 2 1
3 4 31
2 2

(o] (=] keys
x+1|x=3 4
x+55/x=sin(55) 54.0002
x3*2~x+7 —>j{x) Done
fx)x=3 8.73205
nSolve(x3+2-x2—15-x:0,x) 0.

nSolve(x3+2~x2715~x:0,x)\x>0 and x<5 3.

fl(x)z{xz,xﬂ or x22

f2(:f)={:c3_.:::>l and x<2

174 Symbols

— (store) [e) key

Value — Var I 0.785398
— —>myvar
List — Var 4
Matrix — Var 2~cos(x) —»yl(x) Done
_ {1,234} >1st5 {1234}
Expr — Function(Paraml,...)
1 2 3|5 marg 123
List — Function(Paraml,...) 45 6 45 6
Matrix — Function(Paraml,...) "Hello" - str1 "Hello"
If the variable Var does not exist, creates it and
initializes it to Value, List, or Matrix.
If the variable Var already exists and is not locked or
protected, replaces its contents with Value, List, or
Matrix.
Note: You can insert this operator from the keyboard
by typing =: as a shortcut. For example, typepi/4
=: myvar.
:= (assign) (et [+€) keys
Var := Value x 785398
myvar:==— ’
Var := List 4
Var:= Matrix y](x)::}cos(x) Done
, Ist5:={1,2,3,4} {1,234}
Function(Paraml,...) := Expr
to=|1 2 3 123
Function(Paraml,...) := List matg [4 5 6 45 6
Function(Paraml,...) := Matrix str1:="Hello" "Hello"

If variable Var does not exist, creates Var and
initializes it to Value, List, or Matrix.

If Var already exists and is not locked or protected,
replaces its contents with Value, List, or Matrix.

Symbols 175

© (comment) (o) (@) keys
© [text]

Define g(n): Func

© processes text as acomment line, allowing you to © Declare variables
annotate functions and programs that you create. Local i,result
result:=0

© can be at the beginning or anywhere in the line. For i,1,1,1 ©Loop n times
Everything to the right of ©, to the end of the line, is result::resulﬁiz
the comment. EndFor
Note for entering the example: In the Calculator Return result
application on the handheld, you can enter multi-line EndFunc
definitions by pressing (<] instead of at the end Done
of each line. On the computer keyboard, hold down Alt g(3) 14
and press Enter.
0b, Oh (0)(B] keys, [0](H] keys
0b binary Number In Dec base mode:
Oh hexadecimalNumber

0b10+0hF+10 27

Denotes a binary or hexadecimal number,
respectively. To enter a binary or hex number, you
must enter the Ob or Oh prefix regardless of the Base
mode. Without a prefix, a number is treated as 0b10+OhF+10 0b11011
decimal (base 10).

In Bin base mode:

Results are displayed according to the Base mode. In Hex base mode:

0b10+0hF+10 Oh1B

176 Symbols

Empty (Void) Elements

When analyzing real-world data, you might not always have a complete data set. TI-Nspire™
Software allows empty, or void, data elements so you can proceed with the nearly complete
data rather than having to start over or discard the incomplete cases.

You can find an example of data involving empty elements in the Lists & Spreadsheet chapter,
under “Graphing spreadsheet data.”

The delVoid() function lets you remove empty elements from a list. The isVoid() function lets
you test for an empty element. For details, see delVoid(), page 41, and isVoid(), page 66.

« »

Note: To enter an empty element manually in a math expression, type “_” or the keyword
void. The keyword void is automatically converted to a “_” symbol when the expression is
evaluated. To type “_” on the handheld, press (=].

Calculations involving void elements

The majority of calculations involving a void input will | |
produce a void result. See special cases below.

ged(100,_) _
3+_ -
{5.10}{369} {21}
List arguments containing void elements
The following functions and commands ignore (skip) Sum({ 2. 35 6.6}) 16.6
void elements found in list arguments. A
medlan({ 1,2,_,_,_,3}) 2
count, countlf, cumulativeSum, freqTable > list, cumulativeSum({ 12 4\5}) { 13 7 12}
frequency, max, mean, median, product, stDevPop, L 2 L 2
stDevSamp, sum, sumlf, varPop, and varSamp, as cumulativeSum|| 5 4
well as regression calculations, OneVar, TwoVar, and 56 08
FiveNumSummary statistics, confidence intervals,
and stat tests
SortA and SortD move all void elements within the {543,_1}>1ist1 {543_1}
first argument to the bottom. {5:4,3,2,1 }9”812 {5,4’3’2,1 }
SortA list1,list2 Done
list! {1345_}
list2 {13452}

Empty (Void) Elements 177

List arguments containing void elements

In regressions, a void in an X or Y list introduces a
void for the corresponding element of the residual.

An omitted category in regressions introduces a void

for the corresponding element of the residual.

Afrequency of 0 in regressions introduces a void for

the corresponding element of the residual.

{1235} > list1 {123._5}
{12345} - 1list2 {12345}
SortD listl ,list2 Done
listl {5321,_}
list2 {53214}

11:={12,345}: 12={2,_3566}

{23566}
LinRegMx /1,12 Done
stat.Resid
{0.434286,_,-0.862857,-0.011429,0.44 }
stat.XReg {1._3.4.5.}
stat. YReg {2..3.5.66}
stat.FreqReg {L,_,L,L,L}
11:={1345}: 12={235,6.6} {23566}
cat={"M","M","F","F" }: incl:={ "F"
{rpr
LinRegMx 11,12,1,cat,incl Done
stat.Resid {_,_,O.,O. }
stat. XReg {_,_,4.,5. }
stat.YReg {__5.66}
stat.FreqReg {_,_,1 L1 }
11:={1345}: 12={235,6.6} {23566}
LinRegMx 1,12,{1,0,1,1} Done
stat.Resid {0.069231,_,-0.276923,0.207692 }
stat.XReg {1._45}
stat.YReg {2._5.66}
stat.FreqReg { 1.,_,1.,1. }

178 Empty (Void) Elements

Shortcuts for Entering Math Expressions

Shortcuts let you enter elements of math expressions by typing instead of using the Catalog

or Symbol Palette. For example, to enter the expression V6, you can type sqrt (6) on the

entry line. When you press [enter], the expression sqrt (6) is changed to V6. Some shortrcuts
are useful from both the handheld and the computer keyboard. Others are useful primarily

from the computer keyboard.

From the Handheld or Computer Keyboard

To enter this: Type this shortcut:
T pi

0 theta

© infinity

< <=

> >=

/=

= (logicalimplication) =>

& (logicaldouble implication, XNOR) <=>

— (store operator) =

| | (absolute value) abs(...)

N() sqrt(...)

3() (Sum template) sumSeq(...)
I1() (Product template) prodsSeq(...)

sin”(), cos™(), ...

arcsin(...),arccos(...), ...

AList()

deltalList(...)

Shortcuts for Entering Math Expressions

179

From the Computer Keyboard

To enter this: Type this shortcut:
i (imaginary constant) @i
e (natural log base e) Qe
E (scientific notation) QE
T (transpose) et
I (radians) @r
°(degrees) ed
9d (gradians) @g
Z (angle) @<
» (conversion) @

» Decimal, > approxFraction(), and so
on.

@>Decimal, @>approxFraction (), and so
on.

180 Shortcuts for Entering Math Expressions

EOS™ (Equation Operating System) Hierarchy

This section describes the Equation Operating System (EOS™) that is used by the TI-Nspire™
math and science learning technology. Numbers, variables, and functions are entered in a
simple, straightforward sequence. EOS™ software evaluates expressions and equations
using parenthetical grouping and according to the priorities described below.

Order of Evaluation

Level Operator

1 Parentheses (), brackets[], braces{}

2 Indirection (#)

3 Function calls

4 Post operators: degrees-minutes-seconds (°,',"), factorial (!), percentage (%),

radian ("), subscript ([]), transpose (T)

Exponentiation, power operator (*)

Negation ()

Multiplication (+), division (/)

5
6
7 String concatenation (&)
8
9

Addition (+), subtraction (-)

10 Equality relations: equal (=), not equal (# or /=),
lessthan (<), less than or equal (< or <=), greater than (>), greater than or equal
(zor>=)

11 Logical not

12 Logicaland

13 Logicalor

14 xor, nor, nand

15 Logical implication (=)

16 Logical double implication, XNOR (&)

17 Constraint operator (“|")

18 Store (—)

EOS™ (Equation Operating System) Hierarchy 181

Parentheses, Brackets, and Braces

All calculations inside a pair of parentheses, brackets, or braces are evaluated first. For
example, in the expression 4(1+2), EOS™ software first evaluates the portion of the
expression inside the parentheses, 1+2, and then multiplies the result, 3, by 4.

The number of opening and closing parentheses, brackets, and braces must be the same
within an expression or equation. If not, an error message is displayed that indicates the
missing element. For example, (1+2)/(3+4 will display the error message “Missing).”

Note: Because the TI-Nspire™ software allows you to define your own functions, a variable name followed
by an expression in parentheses is considered a “function call” instead of implied multiplication. For

example a(b+c) is the function a evaluated by b+c. To multiply the expression b+c by the variable a, use
explicit multiplication: a+(b+c).

Indirection

The indirection operator (#) converts a string to a variable or function name. For example, #
(“x"&”y"&”Z") creates the variable name xyz. Indirection also allows the creation and
modification of variables from inside a program. For example, if 10—r and “r’—s1, then
#s1=10.

Post Operators

Post operators are operators that come directly after an argument, such as 5!, 25%, or 60°15'
45". Arguments followed by a post operator are evaluated at the fourth priority level. For
example, in the expression 4*3!, 3! is evaluated first. The result, 6, then becomes the
exponent of 4 to yield 4096.

Exponentiation

Exponentiation (*) and element-by-element exponentiation (.*) are evaluated from right to
left. For example, the expression 2*3"2 is evaluated the same as 2*(3"2) to produce 512.
This is different from (2%3)"2, which is 64.

Negation

To enter a negative number, press)] followed by the number. Post operations and
exponentiation are performed before negation. For example, the result of —x2 is a negative
number, and —92 =-81. Use parentheses to square a negative number such as (-9)2 to
produce 81.

Constraint (“[)

The argument following the constraint (“|”) operator provides a set of constraints that affect
the evaluation of the argument preceding the operator.

182 EOS™ (Equation Operating System) Hierarchy

Error Codes and Messages

When an error occurs, its code is assigned to variable errCode. User-defined programs and

functions can examine errCode to determine the cause of an error. For an example of using

errCode, See Example 2 under the Try command, page 141.

Note: Some error conditions apply only to TI-Nspire™ CAS products, and some apply only to

TI-Nspire™ products.

E::; Description

10 A function did not return a value

20 Atest did not resolve to TRUE or FALSE.
Generally, undefined variables cannot be compared. For example, the test If a<b will cause this error if either a or
b is undefined when the If statement is executed.

30 Argument cannot be a folder name.

40 Argument error

50 Argument mismatch
Two or more arguments must be of the same type.

60 Argument must be a Boolean expression or integer

70 Argument must be a decimal number

90 Argument must be a list

100 Argument must be a matrix

130 Argument must be a string

140 Argument must be a variable name.
Make sure that the name:

. does not begin with a digit

. does not contain spaces or special characters

. does not use underscore or period in invalid manner
. does not exceed the length limitations

See the Calculator section in the documentation for more details.

160 Argument must be an expression

165 Batteries too low for sending or receiving

Install new batteries before sending or receiving.

170 Bound

Error Codes and Messages

183

Error

code Description
The lower bound must be less than the upper bound to define the search interval.

180 Break
The or key was pressed during a long calculation or during program execution.

190 Circular definition
This message is displayed to avoid running out of memory during infinite replacement of variable values during
simplification. For example, a+1->a, where a is an undefined variable, will cause this error.

200 Constraint expression invalid
For example, solve(3x*2-4=0,x) | x<0 or x>5 would produce this error message because the constraint is
separated by “or” instead of “and.”

210 Invalid Data type
An argument is of the wrong data type.

220 Dependent limit

230 Dimension
Alist or matrix index is not valid. For example, if the list {1,2,3,4} is stored in L1, then L1[5] is a dimension error
because L1 only contains four elements.

235 Dimension Error. Not enough elements in the lists.

240 Dimension mismatch
Two or more arguments must be of the same dimension. For example, [1,2]+[1,2,3] is a dimension mismatch
because the matrices contain a different number of elements.

250 Divide by zero

260 Domain error
An argument must be in a specified domain. For example, rand(0) is not valid.

270 Duplicate variable name

280 Else and Elself invalid outside of If...Endlf block

290 EndTry is missing the matching Else statement

295 Excessive iteration

300 Expected 2 or 3-element list or matrix

310 The first argument of nSolve must be an equation in a single variable. It cannot contain a non-valued variable other
than the variable of interest.

320 First argument of solve or cSolve must be an equation or inequality
For example, solve(3x*2-4,x) is invalid because the first argument is not an equation.

184 Error Codes and Messages

Error

code Description
345 Inconsistent units
350 Index out of range
360 Indirection string is not a valid variable name
380 Undefined Ans
Either the previous calculation did not create Ans, or no previous calculation was entered.
390 Invalid assignment
400 Invalid assignment value
410 Invalid command
430 Invalid for the current mode settings
435 Invalid guess
440 Invalid implied multiply
For example, x(x+1) is invalid; whereas, x*(x+1) is the correct syntax. This is to avoid confusion between implied
multiplication and function calls.
450 Invalid in a function or current expression
Only certain commands are valid in a user-defined function.
490 Invalid in Try..EndTry block
510 Invalid list or matrix
550 Invalid outside function or program
A number of commands are not valid outside a function or program. For example, Local cannot be used unless it
is in a function or program.
560 Invalid outside Loop..EndLoop, For..EndFor, or While..EndWhile blocks
For example, the Exit command is valid only inside these loop blocks.
565 Invalid outside program
570 Invalid pathname
For example, \var is invalid.
575 Invalid polar complex
580 Invalid program reference
Programs cannot be referenced within functions or expressions such as 1+p(x) where p is a program.
600 Invalid table
605 Invalid use of units
610 Invalid variable name in a Local statement

Error Codes and Messages 185

Error

code Description
620 Invalid variable or function name
630 Invalid variable reference
640 Invalid vector syntax
650 Link transmission
A transmission between two units was not completed. Verify that the connecting cable is connected firmly to both
ends.
665 Matrix not diagonalizable
670 Low Memory
1. Delete some data in this document
2. Save and close this document
If 1 and 2 fail, pull out and re-insert batteries
672 Resource exhaustion
673 Resource exhaustion
680 Missing (
690 Missing)
700 Missing “
710 Missing]
720 Missing }
730 Missing start or end of block syntax
740 Missing Then in the If..EndIf block
750 Name is not a function or program
765 No functions selected
780 No solution found
800 Non-real result
For example, if the software is in the Real setting, \(-1) is invalid.
To allow complex results, change the “Real or Complex” Mode Setting to RECTANGULAR or POLAR.
830 Overflow
850 Program not found
A program reference inside another program could not be found in the provided path during execution.
855 Rand type functions not allowed in graphing
186 Error Codes and Messages

Error

code Description
860 Recursion too deep
870 Reserved name or system variable
900 Argument error
Median-median model could not be applied to data set.
910 Syntax error
920 Text not found
930 Too few arguments
The function or command is missing one or more arguments.
940 Too many arguments
The expression or equation contains an excessive number of arguments and cannot be evaluated.
950 Too many subscripts
955 Too many undefined variables
960 Variable is not defined
No value is assigned to variable. Use one of the following commands:
. sto—
. Define
to assign values to variables.
965 Unlicensed OS
970 Variable in use so references or changes are not allowed
980 Variable is protected
990 Invalid variable name
Make sure that the name does not exceed the length limitations
1000 Window variables domain
1010 Zoom
1020 Internal error
1030 Protected memory violation
1040 Unsupported function. This function requires Computer Algebra System. Try TI-Nspire™ CAS.
1045 Unsupported operator. This operator requires Computer Algebra System. Try TI-Nspire™ CAS.
1050 Unsupported feature. This operator requires Computer Algebra System. Try TI-Nspire™ CAS.

Error Codes and Messages

187

Error

code Description

1060 Input argument must be numeric. Only inputs containing numeric values are allowed.

1070 Trig function argument too big for accurate reduction

1080 Unsupported use of Ans.This application does not support Ans.

1090 Function is not defined. Use one of the following commands:

. Define
. sto—
to define a function.

1100 Non-real calculation
For example, if the software is in the Real setting, V’(—1) is invalid.

To allow complex results, change the “Real or Complex” Mode Setting to RECTANGULAR or POLAR.

1110 Invalid bounds

1120 No sign change

1130 Argument cannot be a list or matrix

1140 Argument error

The first argument must be a polynomial expression in the second argument. If the second argument is omitted,
the software attempts to select a default.

1150 Argument error

The first two arguments must be polynomial expressions in the third argument. If the third argument is omitted,
the software attempts to select a default.

1160 Invalid library pathname
A pathname must be in the form xxx\yyy, where:
. The xxx part can have 1to 16 characters.

. The yyy part can have 1to 15 characters.

See the Library section in the documentation for more details.

1170 Invalid use of library pathname

. A value cannot be assigned to a pathname using Define, :=, or sto —.

. A pathname cannot be declared as a Local variable or be used as a parameterin a
function or program definition.

1180 Invalid library variable name.

Make sure that the name:
. Does not contain a period
. Does not begin with an underscore

188 Error Codes and Messages

Error
code

Description

. Does not exceed 15 characters

See the Library section in the documentation for more details.

1190

Library document not found:

. Verify library is in the MyLib folder.
. Refresh Libraries.

See the Library section in the documentation for more details.

1200

Library variable not found:

. Verify library variable exists in the first problem in the library.
. Make sure library variable has been defined as LibPub or LibPriv.
. Refresh Libraries.

See the Library section in the documentation for more details.

1210

Invalid library shortcut name.

Make sure that the name:

. Does not contain a period

. Does not begin with an underscore
. Does not exceed 16 characters

. Is not areserved name

See the Library section in the documentation for more details.

1220

Domain error:

The tangentLine and normalLine functions support real-valued functions only.

1230

Domain error.

Trigonometric conversion operators are not supported in Degree or Gradian angle modes.

1250

Argument Error

Use a system of linear equations.

Example of a system of two linear equations with variables x and y:
3x+7y=5

2y-5x=-1

1260

Argument Error:

The first argument of nfMin or nfMax must be an expression in a single variable. It cannot contain a non-valued
variable other than the variable of interest.

1270

Argument Error

Order of the derivative must be equal to 1 or 2.

1280

Argument Error

Error Codes and Messages 189

Error

code Description

Use a polynomial in expanded form in one variable.
1290 Argument Error

Use a polynomial in one variable.
1300 Argument Error

The coefficients of the polynomial must evaluate to numeric values.
1310 Argument error:

A function could not be evaluated for one or more of its arguments.
1380 Argument error:

Nested calls to domain() function are not allowed.

190 Error Codes and Messages

Warning Codes and Messages

You can use the warnCodes() function to store the codes of warnings generated by

evaluating an expression. This table lists each numeric warning code and its associated

message. For an example of storing warning codes, see warnCodes(), page 148.

Warning

code Message

10000 Operation might introduce false solutions.

10001 Differentiating an equation may produce a false equation.

10002 Questionable solution

10003 Questionable accuracy

10004 Operation might lose solutions.

10005 cSolve might specify more zeros.

10006 Solve may specify more zeros.

10007 More solutions may exist. Try specifying appropriate lower and upper bounds and/or a guess.
Examples using solve():
. solve(Equation, Var=Guess)|lowBound<Var<upBound
. solve(Equation, Var)|lowBound<Var<upBound
. solve(Equation, Var=Guess)

10008 Domain of the result might be smaller than the domain of the input.

10009 Domain of the result might be larger than the domain of the input.

10012 Non-real calculation

10013 "0 or undef*0 replaced by 1

10014 undef*0 replaced by 1

10015 1”0 or 1*undef replaced by 1

10016 1*undef replaced by 1

10017 Overflow replaced by o or —oo

10018 Operation requires and returns 64 bit value.

10019 Resource exhaustion, simplification might be incomplete.

10020 Trig function argument too big for accurate reduction.

10021 Input contains an undefined parameter.

Warning Codes and Messages

191

Warning
code Message

Result might not be valid for all possible parameter values.

10022 Specifying appropriate lower and upper bounds might produce a solution.

10023 Scalar has been multiplied by the identity matrix.

10024 Result obtained using approximate arithmetic.

10025 Equivalence cannot be verified in EXACT mode.

10026 Constraint might be ignored. Specify constraint in the form "\" 'Variable MathTestSymbol Constant' or a

conjunct of these forms, for example 'x<3 and x>-12'

192 Warning Codes and Messages

Support and Service

Texas Instruments Support and Service

General Information: North and South America

Home Page: education.ti.com

KnowledgeBase and e-mail inquiries: education.ti.com/support

Phone: (800) TI-CARES/ (800) 842-2737
For North and South America and U.S.
Territories

International contact information: http://education.ti.com/en/us/customer-

support/support_worldwide

For Technical Support
Knowledge Base and support by e-mail: education.ti.com/support or ti-cares @ti.com

Phone (not toll-free): (972) 917-8324

For Product (Hardware) Service

Customers in the U.S., Canada, Mexico, and U.S. territories: Always contact Texas
Instruments Customer Support before returning a product for service.

For All Other Countries:

For general information

For more information about T1 products and services, contact Tl by e-mail or visit the
Tl Internet address.

E-mail inquiries: ti-cares@ti.com

Home Page: education.ti.com

Service and Warranty Information

For information about the length and terms of the warranty or about product service, refer to
the warranty statement enclosed with this product or contact your local Texas Instruments
retailer/distributor.

Supportand Service 193

http://education.ti.com/
http://education.ti.com/support
http://education.ti.com/en/us/customer-support/support_worldwide
http://education.ti.com/en/us/customer-support/support_worldwide
http://education.ti.com/en/us/customer-support/support_worldwide
http://education.ti.com/support
mailto:ti-cares@ti.com
mailto:ti-cares@ti.com
mailto:ti-cares@ti.com
mailto:ti-cares@ti.com
http://education.ti.com/

194

Index

- SUBRIAC . L e 156
|

L factorial .. . 165
n

"osecond NOtation e 172
#

208 0o 11 T3 o 170
#, IndireCtion Operator . . e 182
%

B3 o 1= (eT=Y o | 161
&

&, PPN . e e e 165
*

L MURIPlY e 157
-, dot subtraction . . e 160
Codot multiplication oL 160
Aot dIVISION e e 160
Ot POW T e e 161

Index 195

A dot addition L. eaaaaaa.

/
[dIVIdE e ieiiaan-
B = 1T o o
A
A rECIPrOCAl . . o e
B 070 1=
|, CONStraint OPerator . . . e
I
MINUtE NOtAtION . | . e e
#, N0t eqUAl - e e e
S lessthanorequal
2, greaterthan orequal i eiieiaa-
> greater than . e e
S eqUal L e e
[, ProduCt e
2 T3
2L 1€

160

158

175

173
158

174

172

162
163
164
163
161

167

168
168

196 Index

D £ 11 169

N, SQUAME OOt - - - o o e e e e e e e e e e e e e e e 167

L (ANGIE) - oo e 172

121 =T = 166
>
L= o]0 (0 q = Tox £ o] T () T 16
»Base10, display as decimalinteger 21
»Base16, display as hexadecimal 21
»Base2, display as binary 20
»Cylind, display as cylindrical vector 37
»DD, display as decimal angle 37
»Decimal, display result as decimal 38
»DMS, display as degree/minute/second 42
»Grad, converttogradianangle 60
»Polar, display as polar VeCtor e 99
»Rad, converttoradianangle 107
»Rect, display as rectangular vector ieeieaaaaaaon 110
»Sphere, display as spherical vectorol 130
=
=, logical implication aeiiaaaao. 164, 179
—
=, storevaniable . . e 175

Index 197

©, logical double implication 165, 179
©

©, COMMENE . . e et e e e e e e 176
o

o, degree Notation 171

°, degrees/minutes/SeCoNdS 172
0

Ob, binary indicator 176

Oh, hexadecimal indicator e 176
1

107 (), POWer Of teN . L e e 173
2

2-sample F Test . e e emeeeaaaaaas 54
A

abs(), absolutevalue eeeeaaan 1

absolute value

template fOr e e 7-8

Add, * e e e 156

amortization table, amortTbl() eeeeeeeaas 11,19

amortTbl(), amortizationtable 11,19

and, Boolean Operator e e 12

angle(), angle . .. e e e 12

E= a7 (S T0=T o | =T (R 12

ANOVA, one-way variance analysis 13

198 Index

ANOVA2way, two-way variance analysis e 14
ANS, laSt ANSWer e aeeeeaeeaaan 16
answer (1ast), ANS L i 16
APPENG, & . e e e 165
approx(), appProXimate e e 16
APProXimate, @PPrOX() - - .o e e o et e e e e e e e e e e 16
approxXRational() - - ... 17
AICCOS(), COS ™) - o i et e e e e e e e e e e e 17
arccosh(), COSh™ () .« .- 17
ArCCOt(), COt T () .« o m ot e et 17
arccoth(), Coth™ () — . ..o 17
AICCSC(), CSC) oo oottt e e e e e e e e e e e e 17
arcCsCh(), CSCh™ ()« .- 17
ArCSEC(), SEC ™ () w e e e e e e e e e e 17
arcsech(), CseCh™ () . ..o oo 17
arCSiN(), SINT () oot e e e e e e e e e 18
arcsinh(), SINNT ()« .. e 18
arctan(), taN ™ () .« ..o e 18
arctanh(), tanh ™ () - ... e 18
arguments in TVM funCtions 144
augment(), augment/concatenatel eaaaaaan 18
augment/concatenate, augment() 18
average rate of change, avgRC() 18
avgRC(), averagerate of change 18
B

binary

display, »Base? . e eeeeeaaaaa- 20

indicator, Ob eeaaaaan 176
bINOMCAf() - - eiiaaao. 22
DINOMPAS () L . e e 22
Boolean operators

D e e e eiieeaaan 164, 179

e e e e e e 165

and 12

Index 199

AN . e e e e 88

110 92

10 93

o 96

(o 149

C

L0 50
ceiling(), Ceilingo 22
ceiling, ceiling() - ..ot 22,33
CeNtralDiff () o e e e e e e 22
char(), character string - 23
character string, Char() - e 23
characters

numeric code, Ord() e e 97

StHiNG, Char() . ..o 23
clear

error, CITErT e 25
ClearAZ e e 25
[0 1 = == =T o 25
COlAUGMENE . . ettt e 26
colDim(), matrix column dimension . _ ieiiieaa 26
colNorm(), matrix ColUmMN NOrM . e e 26
combinations, NCI() ...ttt 89
COMMENE, © . . ittt e 176
complex

conjUAte, CONJ() - .o c oo e e o e e e e e e e e e e e 26
conj(), complex conjugate 26
constraint Operator | e e e eeeeeeaaaan 174
constraint operator, order of evaluation L. iii... 181
construct matrix, constructMat() 26
constructMat(), construct matrix iaaaaaaaa. 26
convert

L= o 60

L o 107

200 Index

copy variable or function, CopyVaro 27

correlation matrix, corrMat()o eaaeaaaaa- 27
corrMat(), correlation matrix iiiaaa- 27
COS ™, @ICCOSING . . .ottt ettt e e 29
COS(), COSINE . . ittt e e e e et 28
cosh™(), hyperbolic arccosine i iaaaaan 30
cosh(), hyperbolic cosine e 29
COSING, COS() - e et e et e 28
cot™(), @arcCotangent e 31
[o7 o] () R T €= 4T =T 3| 30
cotangent, COt() - oot e 30
coth™(), hyperbolic arccotangent . . _ 32
coth(), hyperbolic cotangent i ieaeeaaaa- 31
count days between dates, dbd() ieaieaaaa. 37
count items in a list conditionally , countif() i... 32
countitems inalist, COUNt() e 32
count(), countitemsinalist iiaaaaaa 32
countif(), conditionally countitems inalist 32
CPOIYROOtS () - - - oo e eiieaaa- 33
Cross product, CroSSP()t e e e 33
crossP(), cross product . . e iaaaaaan 33
€SC™(), INVErse COSECANt -ot 34
CSC(), COSECANT . | e 34
csch™(), inverse hyperbolic cosecant a.. 35
csch(), hyperbolic cosecant iaaaaaan 35
cubic regression, CubiCRego iaaaaaan 35
CubicReg, cubic regression e 35
cumulative sum, cumulativeSum() . .. e 36
cumulativeSum(), cumulative sum . .. eiaaaaaas 36
cycle, CyCle .. e 36
Cycle, CYCle i 36
cylindrical vector display, »Cylind . . _ .. e 37
D
d(), firstderivative e 166

Index 201

days betweendates, dbd() 37

dbd(), days betweendates iaeaeaaaaa. 37
decimal

angledisplay, »DD .. 37

integer display, »Base10 _ eeeeeeeiaaaan 21
Define . .. eeeeeaenaaaan 38
Define LibPriv - el 39
Define LibPub . e 40
define, Define e 38
Define, define e 38
defining

private function or program . _ . e 39

public function or program e 40

definite integral

template for . . .ol 10
degree Notation, © . .. 171
degree/minute/second display, »DMS . .. L iaaaaaan 42
degree/minute/second notationl iiaaaaaan 172
delete

void elements from list 41
deleting

variable, DelVar e eeeeeaaaaa- 40
deltalist() - - oo oo 40
DelVar, delete variable 40
delVoid(), remove void elements ieaaaaaaa- 41
derivatives

firstderivative, d() -o 166

numeric derivative, NDErV() 90-91

numeric derivative, nDerivative() 89
det(), matrix determinant _ eaaaaaaas 41
diag(), matrix diagonal iaaa- 41
dim(), diMenSiON e 42
dimension, dim() e 42
Disp, display data e 42
display as

binary, »Base? . . e 20

202 Index

cylindrical vector, »Cylind eeeaan 37
decimalangle, DD ... e 37
decimalinteger, »Base10 ieiieaaa- 21
degree/minute/second, »DMS s 42
hexadecimal, »Base16 21
polarvector, »Polar e 99
rectangular vector, »Rect . ..o 110
spherical vector, »Sphere 130
display data, DiSp e e e 42
distribution functions
bINOM C A () - - oo 22
bINOM P () L . e e 22
INVNOIMI() o e e e e e e 65
L0172 65
L0177 () T 65
NOMMC AT () L. e e e e e e 92
NOMMPAf() . e 93
POISSCAf() - ot 99
POISSPAf() - e ieeeeaa 99
(O] 138
Lo T 140
DA = (5 1 23
DG L[24
G L 24
DG L{ () 25
011V L= 158
dot
addition, .+ e eeeaas 160
diVISION, ./ e 160
MURPICAtioN, % e 160
10 161
product, dotP () . .. e e 43
SUDEraCtioN, .- .- 160
dotP(), dot product . . .- 43

Index 203

e exponent
template for . . . el 6
€10 @ POWET, BN) Lot 43,48
B, eXPONeNt . e e e e 170
L300 = (o= I oo = 43
eff(), convert nominal to effectiverate iii.. 44
effective rate, eff() 44
eigenvalue, eigVI() - .- 45
eigenvector, @10V C() - ... 44
eigVC(), IgeNVECTOr .« e eieaaa- 44
eigVI(), eigenvalue . . . e 45
elseif, Elself . . e 45
else, Else | ... 61
Elself, elseif | e ieiiieaoa. 45
empty (void) elements . . . e 177
end
for, ENAF Or . . et 52
function, EndFUNC . . Lo 55
i, ENAIf e 61
100D, ENALOOD e 79
program, EndPrgm e 102
try, ENATry e 141
while, EndWhile . .. 149
end function, EndFunC ... e 55
endif, EndIf L e 61
end 100p, ENdLOOp - - 79
end while, EndWhile . . . e 149
EndTry, endtry ... e 141
EndWhile, end while eeeeeeeeaaaaan 149
EOS (Equation Operating System) ieaaaaaaon 181
eqUAl, = e e e 161
Equation Operating System (EOS) i e 181
error codes and MEeSSAQES . . . oo oo oo e 183, 191

204 Index

errors and troubleshooting

clearerror, CItErT .. e 25

pass error, PassErT _ e 98
euler(), BEuler function . . . e 46
evaluate polynomial, polyEval() e iaaaeaaan 100
evaluation, order of 181
exclusion with "|" operator . . . e iiiaaa 174
Xit, EXIt | e e 47
EXit, eXit L e e 47
EXP(), €10 @ POWET e 48
EXPONENt, E . e eeeeaaan 170
exponential regession, EXpPREG 48
exponents

template for e 5
expr(), string to eXpressioN . . . i 48
ExpReg, exponential regession 48
expressions

string to eXpression, eXPr()o e e e 48

F

factor(), factor .. e eeeeeeaaaaaos 49
factor, factor() - el 49
factorial, | o e e 165
Fill, matrix fill e 50
financial functions, tvmF V() 143
financial functions, tvml() iaaaa- 144
financial functions, tvmN () 144
financial functions, tvmPmt() ... i 144
financial functions, tvmPV() 144

first derivative

template fOr e e 9
FiveNumSUMmMary 51
floor(), floOr . . . e 51
o] T 51
o 52

Index 205

o T 52
Lo A o 52
format string, format() 52
format(), format String 52
fpart(), function part _ e ieaeeaaaaaa- 53
fractions

o]0 o] = o 103

template fOr | e e 5
LT L= o= 53
LT V=T33 54
Frobenius norm, NOMM() . - . ..o ieiiaaaaon 92
Func, funCtion . e 55
Func, program function 55
functions

7= 0 o 7= o () 53

program function, FUNC . . . e 55

user-defined, 38
functions and variables

o o) T R 27

G

0, gradians - - . e eieaaaan 170
ged(), greatest common divisor 56
[0 1=T0 T2 T 1 56
o 1=To T2 = 1 Y 56
get/return

denominator, getDenomM() e 57

number, gQetNUM() eeeeeeeaaaaan 59

variables injformation, getVarlnfo() iaaaaan 57, 59
getDenom(), get/return denominator iaaaa- 57
getLanglnfo(), get/return language information __ 57
getLocklnfo(), tests lock status of variable or variablegroup__....... 57
getMode(), get mode settingso iaaaaaan 58
getNum(), get/return number _ _ . . .- 59
getType(), gettypeof variable eea.. 59

206 Index

getVarlnfo(), get/return variables information .. _ 59
010, GOt . . ottt 60
[T} {o T o o 60
gradian Notation, g e 170
greaterthanorequal, = 164
greaterthan, > e 163
greatest common divisor, gCd() - - - - oo 56
groups, lockingand unlocking 76, 147
groups, testing lock status ieiaeeaaaaa- 57
H
hexadecimal
display, »Baset6 . .. e 21
indicator, Oh e 176
hyperbolic
arcCosiNg, COSh™ () .« .o it 30
arcsine, SINNT () ... e 127
arctangent, tanh ™ () ... 138
COSING, COSN() . L.t e e e e e e e e e 29
SiNE, SINN() - oo e 127
tangent, tanh() e 137
|
identity matrix, identity () -o ceiiaaaoon 61
identity (), identity matriX _ . . e 61
10 U 61
Y 61
1122 T 62
imag(), iImaginary Part e e 63
imaginary part, imag() -o e e e 63
indirection operator (#) e 182
INdireCtion, # | L i 170
iNString(), Within String . . . e 63
INt(), INteger . . e e 63

Index 207

intDiv(), integerdivide eeeeeeeaaaaas 64

integer divide, iINtDIV() eeeeeeeaaaaan 64
integer part, IPart() - ieiiaaaoan 65
INteger, INt() .. e e e e e 63
INtegral, | .. e e e 166
interpolate(), in