
TI-Nspire™ / TI-Nspire™ CX
Reference Guide

This guidebookapplies to TI-Nspire™software version 3.6. To obtain the latest version of the
documentation, go to education.ti.com/guides.

http://www.education.ti.com/guides

2

Important Information

Except asotherwise expressly stated in the License that accompaniesa program, Texas
Instrumentsmakesno warranty, either expressor implied, including but not limited to any
implied warranties of merchantability and fitness for a particular purpose, regarding any
programsor bookmaterials andmakes suchmaterials available solely on an "as-is" basis. In
no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or
consequential damages in connection with or arising out of the purchase or use of these
materials, and the sole and exclusive liability of Texas Instruments, regardlessof the form of
action, shall not exceed the amount set forth in the license for the program.Moreover, Texas
Instruments shall not be liable for any claim of any kind whatsoever against the use of these
materials byanyother party.

License
Please see the complete license installed in

C:\Program Files\TI Education\<TI-Nspire™ Product Name>\license.

© 2006 - 2013 Texas Instruments Incorporated

Contents

Important Information 2

Expression Templates 5

Alphabetical Listing 11
A 11
B 19
C 22
D 37
E 43
F 49
G 56
I 61
L 67
M 80
N 88
O 95
P 98
Q 104
R 106
S 119
T 136
U 146
V 147
W 148
X 149
Z 150

Symbols 156

Empty (Void) Elements 177

Shortcuts for Entering Math Expressions 179

EOS™ (Equation Operating System) Hierarchy 181

Error Codes and Messages 183

3

4

Warning Codes and Messages 191

Support and Service 193
Texas InstrumentsSupport and Service 193
Service andWarranty Information 193

Index 195

Expression Templates

Expression templatesgive you an easyway to enter math expressions in standard
mathematical notation.When you insert a template, it appears on the entry line with small
blocksat positionswhere you can enter elements. A cursor showswhich element you can
enter.

Use the arrow keysor presse to move the cursor to each element’s position, and type a
value or expression for the element. Press· or/· to evaluate the expression.

Fraction template /p keys

Note: See also / (divide), page 158.

Example:

Exponent template l key

Note: Type the first value, pressl, and then type

the exponent. To return the cursor to the baseline,
press right arrow (¢).

Note: See also ^ (power), page 158.

Example:

Square root template /q keys

Note: See also √() (square root), page 167.
Example:

Expression Templates 5

6 Expression Templates

Nth root template /l keys

Note: See also root(), page 116.

Example:

e exponent template u keys

Natural exponential e raised to a power

Note: See also e^(), page 43.

Example:

Log template /s key

Calculates log to a specified base. For a default of
base 10, omit the base.

Note: See also log(), page 76.

Example:

Piecewise template (2-piece) Catalog >

Lets you create expressions and conditions for a
two-piece piecewise function. To add a piece, click in
the template and repeat the template.

Note: See also piecewise(), page 99.

Example:

Piecewise template (N-piece) Catalog >

Lets you create expressions and conditions for anN-piece Example:

Piecewise template (N-piece) Catalog >

piecewise function. Prompts forN.

Note: See also piecewise(), page 99.

See the example for Piecewise template
(2-piece).

System of 2 equations template Catalog >

Creates a system of two linear equations. To add a
row to an existing system, click in the template and
repeat the template.

Note: See also system(), page 135.

Example:

System of N equations template Catalog >

Lets you create a system of Nlinear equations. Prompts forN.

Note: See also system(), page 135.

Example:

See the example for System of
equations template (2-equation).

Absolute value template Catalog >

Note: See also abs(), page 11.
Example:

Expression Templates 7

8 Expression Templates

dd°mm’ss.ss’’ template Catalog >

Lets you enter angles in dd°mm’ss.ss’’ format, where
dd is the number of decimal degrees, mm is the
number of minutes, and ss.ss is the number of
seconds.

Example:

Matrix template (2 x 2) Catalog >

Creates a 2 x 2matrix.

Example:

Matrix template (1 x 2) Catalog >

.
Example:

Matrix template (2 x 1) Catalog >

Example:

Matrix template (m x n) Catalog >

The template appears after you are prompted to
specify the number of rows and columns.

Example:

Matrix template (m x n) Catalog >

Note: If you create amatrix with a large number of
rows and columns, it may take a few moments to
appear.

Sum template (Σ) Catalog >

Note: See also Σ() (sumSeq), page 168.

Example:

Product template (Π) Catalog >

Note: See alsoΠ() (prodSeq), page 167.

Example:

First derivative template Catalog >

The first derivative template can be used to calculate
first derivative at a point numerically, using auto
differentiationmethods.

Note: See also d() (derivative), page 166.

Example:

Second derivative template Catalog >

Example:

Expression Templates 9

10 Expression Templates

Second derivative template Catalog >

The second derivative template can be used to
calculate second derivative at a point numerically,
using auto differentiationmethods.

Note: See also d() (derivative), page 166.

Definite integral template Catalog >

The definite integral template can be used to calculate
the definite integral numerically, using the same
method as nInt().

Note: See also nInt(), page 91.

Example:

Alphabetical Listing

Itemswhose namesare not alphabetic (such as+, !, and >) are listed at the end of this
section, page 156. Unlessotherwise specified, all examples in this section were performed in
the default reset mode, and all variablesare assumed to be undefined.

A

abs() Catalog >

abs(Value1)⇒ value
abs(List1)⇒ list
abs(Matrix1)⇒ matrix

Returns the absolute value of the argument.

Note: See also Absolute value template, page 7.

If the argument is a complex number, returns the
number’s modulus.

amortTbl() Catalog >

amortTbl(NPmt,N,I,PV, [Pmt], [FV], [PpY], [CpY],
[PmtAt], [roundValue])⇒ matrix

Amortization function that returns amatrix as an
amortization table for a set of TVM arguments.

NPmt is the number of payments to be included in the
table. The table starts with the first payment.

N, I, PV, Pmt, FV, PpY, CpY, andPmtAt are
described in the table of TVM arguments, page 144.

• If you omit Pmt, it defaults toPmt=tvmPmt
(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults toFV=0.
• The defaults for PpY, CpY, andPmtAt are the

same as for the TVM functions.

roundValue specifies the number of decimal places
for rounding. Default=2.

The columns in the result matrix are in this order:
Payment number, amount paid to interest, amount

Alphabetical Listing 11

12 Alphabetical Listing

amortTbl() Catalog >

paid to principal, and balance.

The balance displayed in row n is the balance after
payment n.

You can use the output matrix as input for the other
amortization functions ΣInt() and ΣPrn(), page 168,
and bal(), page 19.

and Catalog >

BooleanExpr1 andBooleanExpr2 ⇒ Boolean
expression

BooleanList1 andBooleanList2 ⇒ Boolean list

BooleanMatrix1 andBooleanMatrix2 ⇒ Boolean
matrix

Returns true or false or a simplified form of the original
entry.

Integer1 andInteger2 ⇒ integer

Compares two real integers bit-by-bit using an and
operation. Internally, both integers are converted to
signed, 64-bit binary numbers. When corresponding
bits are compared, the result is 1 if both bits are 1;
otherwise, the result is 0. The returned value
represents the bit results, and is displayed according
to the Basemode.

You can enter the integers in any number base. For a
binary or hexadecimal entry, youmust use the 0b or
0h prefix, respectively. Without a prefix, integers are
treated as decimal (base 10).

In Hex basemode:

Important: Zero, not the letter O.

In Bin basemode:

In Dec basemode:

Note: A binary entry can have up to 64 digits (not
counting the 0b prefix). A hexadecimal entry can have
up to 16 digits.

angle() Catalog >

angle(Value1)⇒ value

Returns the angle of the argument, interpreting the
argument as a complex number.

In Degree anglemode:

angle() Catalog >

In Gradian anglemode:

In Radian anglemode:

angle(List1)⇒ list
angle(Matrix1)⇒ matrix

Returns a list or matrix of angles of the elements in
List1 orMatrix1, interpreting each element as a
complex number that represents a two-dimensional
rectangular coordinate point.

ANOVA Catalog >

ANOVA List1,List2[,List3,...,List20][,Flag]

Performs a one-way analysis of variance for comparing the
means of two to 20 populations. A summary of results is stored
in the stat.results variable. (page 131)

Flag=0 for Data, Flag=1 for Stats

Output variable Description

stat.F Value of the F statistic

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom of the groups

stat.SS Sum of squares of the groups

stat.MS Mean squares for the groups

stat.dfError Degrees of freedom of the errors

stat.SSError Sum of squares of the errors

stat.MSError Mean square for the errors

stat.sp Pooled standard deviation

Alphabetical Listing 13

14 Alphabetical Listing

Output variable Description

stat.xbarlist Mean of the input of the lists

stat.CLowerList 95% confidence intervals for themean of each input list

stat.CUpperList 95% confidence intervals for themean of each input list

ANOVA2way Catalog >

ANOVA2way List1,List2[,List3,…,List10][,levRow]

Computes a two-way analysis of variance for comparing the
means of two to 10 populations. A summary of results is stored
in the stat.results variable. (See page 131.)

LevRow=0 for Block

LevRow=2,3,...,Len-1, for Two Factor, where Len=length(List1)
=length(List2) = … = length(List10) and Len / LevRow Î {2,3,…}

Outputs: Block Design

Output variable Description

stat.F F statistic of the column factor

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom of the column factor

stat.SS Sum of squares of the column factor

stat.MS Mean squares for column factor

stat.FBlock F statistic for factor

stat.PValBlock Least probability at which the null hypothesis can be rejected

stat.dfBlock Degrees of freedom for factor

stat.SSBlock Sum of squares for factor

stat.MSBlock Mean squares for factor

stat.dfError Degrees of freedom of the errors

stat.SSError Sum of squares of the errors

stat.MSError Mean squares for the errors

stat.s Standard deviation of the error

COLUMN FACTOR Outputs

Output variable Description

stat.Fcol F statistic of the column factor

stat.PValCol Probability value of the column factor

stat.dfCol Degrees of freedom of the column factor

stat.SSCol Sum of squares of the column factor

stat.MSCol Mean squares for column factor

ROW FACTOR Outputs

Output variable Description

stat.FRow F statistic of the row factor

stat.PValRow Probability value of the row factor

stat.dfRow Degrees of freedom of the row factor

stat.SSRow Sum of squares of the row factor

stat.MSRow Mean squares for row factor

INTERACTION Outputs

Output variable Description

stat.FInteract F statistic of the interaction

stat.PValInteract Probability value of the interaction

stat.dfInteract Degrees of freedom of the interaction

stat.SSInteract Sum of squares of the interaction

stat.MSInteract Mean squares for interaction

ERROR Outputs

Output variable Description

stat.dfError Degrees of freedom of the errors

stat.SSError Sum of squares of the errors

stat.MSError Mean squares for the errors

s Standard deviation of the error

Alphabetical Listing 15

16 Alphabetical Listing

Ans /v keys

Ans⇒ value

Returns the result of themost recently evaluated
expression.

approx() Catalog >

approx(Value1)⇒ number

Returns the evaluation of the argument as an
expression containing decimal values, when possible,
regardless of the current Auto or Approximatemode.

This is equivalent to entering the argument and
pressing/·.

approx(List1)⇒ list
approx(Matrix1)⇒ matrix

Returns a list ormatrix where each element has been
evaluated to a decimal value, when possible.

►approxFraction() Catalog >

Value►approxFraction([Tol])⇒ value

List►approxFraction([Tol])⇒ list

Matrix►approxFraction([Tol])⇒ matrix

Returns the input as a fraction, using a tolerance of
Tol. If Tol is omitted, a tolerance of 5.E-14 is used.

Note: You can insert this function from the computer
keyboard by typing @>approxFraction(...).

approxRational() Catalog >

approxRational(Value[, Tol])⇒ value

approxRational(List[, Tol])⇒ list

approxRational(Matrix[, Tol])⇒ matrix

Returns the argument as a fraction using a tolerance
of Tol. If Tol is omitted, a tolerance of 5.E-14 is used.

arccos() See cos⁻¹(), page 29.

arccosh() See cosh⁻¹(), page 30.

arccot() See cot⁻¹(), page 31.

arccoth() See coth⁻¹(), page 32.

arccsc() See csc⁻¹(), page 34.

arccsch() See csch⁻¹(), page 35.

arcsec() See sec⁻¹(), page 119.

arcsech() See sech⁻¹(), page 120.

Alphabetical Listing 17

18 Alphabetical Listing

arcsin() See sin⁻¹(), page 126.

arcsinh() See sinh⁻¹(), page 127.

arctan() See tan⁻¹(), page 137.

arctanh() See tanh⁻¹(), page 138.

augment() Catalog >

augment(List1, List2)⇒ list

Returns a new list that is List2 appended to the end of
List1.

augment(Matrix1,Matrix2)⇒ matrix

Returns a new matrix that isMatrix2 appended to
Matrix1. When the “,” character is used, thematrices
must have equal row dimensions, andMatrix2 is
appended toMatrix1 as new columns. Does not alter
Matrix1 orMatrix2.

avgRC() Catalog >

avgRC(Expr1, Var [=Value] [, Step])⇒ expression

avgRC(Expr1, Var [=Value] [, List1])⇒ list

avgRC(List1, Var [=Value] [, Step])⇒ list

avgRC(Matrix1, Var [=Value] [, Step])⇒ matrix

Returns the forward-difference quotient (average rate
of change).

Expr1 can be a user-defined function name (see
Func).

avgRC() Catalog >

WhenValue is specified, it overrides any prior
variable assignment or any current “|” substitution for
the variable.

Step is the step value. If Step is omitted, it defaults to
0.001.

Note that the similar function centralDiff() uses the
central-difference quotient.

B

bal() Catalog >

bal(NPmt,N,I,PV ,[Pmt], [FV], [PpY], [CpY], [PmtAt],
[roundValue])⇒ value

bal(NPmt,amortTable)⇒ value

Amortization function that calculates schedule
balance after a specified payment.

N, I, PV, Pmt, FV, PpY, CpY, andPmtAt are
described in the table of TVM arguments, page 144.

NPmt specifies the payment number after which you
want the data calculated.

N, I, PV, Pmt, FV, PpY, CpY, andPmtAt are
described in the table of TVM arguments, page 144.

• If you omit Pmt, it defaults toPmt=tvmPmt
(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults toFV=0.
• The defaults for PpY, CpY, andPmtAt are the

same as for the TVM functions.

roundValue specifies the number of decimal places
for rounding. Default=2.

bal(NPmt,amortTable) calculates the balance after
payment numberNPmt, based on amortization table
amortTable. The amortTable argument must be a
matrix in the form described under amortTbl(), page
11.

Note: See also ΣInt() and ΣPrn(), page 168.

Alphabetical Listing 19

20 Alphabetical Listing

►Base2 Catalog >

Integer1►Base2⇒ integer

Note: You can insert this operator from the computer
keyboard by typing @>Base2.

Converts Integer1 to a binary number. Binary or
hexadecimal numbers always have a 0b or 0h prefix,
respectively. Use a zero, not the letter O, followed by
b or h.

0b binaryNumber
0h hexadecimalNumber

A binary number can have up to 64 digits. A
hexadecimal number can have up to 16.

Without a prefix, Integer1 is treated as decimal
(base 10). The result is displayed in binary, regardless
of the Basemode.

Negative numbers are displayed in “two's
complement” form. For example,

⁻1 is displayed as
0hFFFFFFFFFFFFFFFF in Hex basemode
0b111...111 (64 1’s) in Binary basemode

⁻263 is displayed as
0h8000000000000000 in Hex basemode
0b100...000 (63 zeros) in Binary basemode

If you enter a decimal integer that is outside the range
of a signed, 64-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range. Consider the following examples of
values outside the range.

263 becomes ⁻263 and is displayed as
0h8000000000000000 in Hex basemode
0b100...000 (63 zeros) in Binary basemode

264 becomes 0 and is displayed as
0h0 in Hex basemode
0b0 in Binary basemode

⁻263 − 1 becomes 263 − 1 and is displayed as
0h7FFFFFFFFFFFFFFF in Hex basemode
0b111...111 (64 1’s) in Binary basemode

►Base10 Catalog >

Integer1►Base10⇒ integer

Note: You can insert this operator from the computer
keyboard by typing @>Base10.

Converts Integer1 to a decimal (base 10) number. A
binary or hexadecimal entry must always have a 0b or
0h prefix, respectively.

0b binaryNumber
0h hexadecimalNumber

Zero, not the letter O, followed by b or h.

A binary number can have up to 64 digits. A
hexadecimal number can have up to 16.

Without a prefix, Integer1 is treated as decimal. The
result is displayed in decimal, regardless of the Base
mode.

►Base16 Catalog >

Integer1►Base16⇒ integer

Note: You can insert this operator from the computer
keyboard by typing @>Base16.

Converts Integer1 to a hexadecimal number. Binary
or hexadecimal numbers always have a 0b or 0h
prefix, respectively.

0b binaryNumber
0h hexadecimalNumber

Zero, not the letter O, followed by b or h.

A binary number can have up to 64 digits. A
hexadecimal number can have up to 16.

Without a prefix, Integer1 is treated as decimal
(base 10). The result is displayed in hexadecimal,
regardless of the Basemode.

If you enter a decimal integer that is too large for a
signed, 64-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range. For more information, see
►Base2, page 20.

Alphabetical Listing 21

22 Alphabetical Listing

binomCdf() Catalog >

binomCdf(n,p)⇒ number

binomCdf(n,p,lowBound,upBound)⇒ number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

binomCdf(n,p,upBound)for P(0≤X≤upBound)⇒ number if
upBound is a number, list if upBound is a list

Computes a cumulative probability for the discrete binomial
distribution with n number of trials and probability p of success on
each trial.

For P(X ≤ upBound), set lowBound=0

binomPdf() Catalog >

binomPdf(n,p)⇒ number

binomPdf(n,p,XVal)⇒ number if XVal is a number, list if XVal is
a list

Computes a probability for the discrete binomial distribution with
n number of trials and probability p of success on each trial.

C

ceiling() Catalog >

ceiling(Value1)⇒ value

Returns the nearest integer that is ≥ the argument.

The argument can be a real or a complex number.

Note: See also floor().

ceiling(List1)⇒ list
ceiling(Matrix1)⇒ matrix

Returns a list or matrix of the ceiling of each element.

centralDiff() Catalog >

centralDiff(Expr1,Var [=Value][,Step])⇒ expression

centralDiff(Expr1,Var [,Step])|Var=Value⇒
expression

centralDiff() Catalog >

centralDiff(Expr1,Var [=Value][,List])⇒ list

centralDiff(List1,Var [=Value][,Step])⇒ list

centralDiff(Matrix1,Var [=Value][,Step])⇒ matrix

Returns the numerical derivative using the central
difference quotient formula.

WhenValue is specified, it overrides any prior
variable assignment or any current “|” substitution for
the variable.

Step is the step value. If Step is omitted, it defaults to
0.001.

When using List1 orMatrix1, the operation gets
mapped across the values in the list or across the
matrix elements.

Note: See also avgRC().

char() Catalog >

char(Integer)⇒ character

Returns a character string containing the character
numbered Integer from the handheld character set.
The valid range for Integer is 0–65535.

χ22way Catalog >

χ22way obsMatrix

chi22way obsMatrix

Computes a χ2 test for association on the two-way table of
counts in the observedmatrix obsMatrix. A summary of results
is stored in the stat.results variable. (page 131)

For information on the effect of empty elements in amatrix, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.χ2 Chi square stat: sum (observed - expected)2/expected

Alphabetical Listing 23

24 Alphabetical Listing

Output variable Description

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom for the chi square statistics

stat.ExpMat Matrix of expected elemental count table, assuming null hypothesis

stat.CompMat Matrix of elemental chi square statistic contributions

χ2Cdf() Catalog >

χ2Cdf(lowBound,upBound,df)⇒ number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

chi2Cdf(lowBound,upBound,df)⇒ number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

Computes the χ2 distribution probability between lowBound and
upBound for the specified degrees of freedom df.

For P(X ≤ upBound), set lowBound =0.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

χ2GOF Catalog >

χ2GOF obsList,expList,df

chi2GOF obsList,expList,df

Performs a test to confirm that sample data is from a population
that conforms to a specified distribution. obsList is a list of
counts andmust contain integers. A summary of results is
stored in the stat.results variable. (See page 131.)

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.χ2 Chi square stat: sum((observed - expected)2/expected

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom for the chi square statistics

stat.CompList Elemental chi square statistic contributions

χ2Pdf() Catalog >

χ2Pdf(XVal,df)⇒ number if XVal is a number, list if XVal is a list

chi2Pdf(XVal,df)⇒ number if XVal is a number, list if XVal is a
list

Computes the probability density function (pdf) for the χ2

distribution at a specifiedXVal value for the specified degrees of
freedom df.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

ClearAZ Catalog >

ClearAZ

Clears all single-character variables in the current
problem space.

If one or more of the variables are locked, this
command displays an error message and deletes only
the unlocked variables. See unLock, page 147.

ClrErr Catalog >

ClrErr

Clears the error status and sets system variable errCode to
zero.

The Else clause of the Try...Else...EndTry block should use
ClrErr or PassErr. If the error is to be processed or ignored, use
ClrErr. If what to do with the error is not known, use PassErr to
send it to the next error handler. If there are nomore pending
Try...Else...EndTry error handlers, the error dialog box will be
displayed as normal.

Note: See also PassErr, page 98, and Try, page 141.

Note for entering the example: In the Calculator application on
the handheld, you can enter multi-line definitions by pressing@
instead of· at the end of each line. On the computer

keyboard, hold down Alt and press Enter.

For an example of ClrErr, See Example
2 under the Try command, page 141.

Alphabetical Listing 25

26 Alphabetical Listing

colAugment() Catalog >

colAugment(Matrix1,Matrix2)⇒ matrix

Returns a new matrix that isMatrix2 appended to
Matrix1. Thematrices must have equal column
dimensions, andMatrix2 is appended toMatrix1 as
new rows. Does not alterMatrix1 orMatrix2.

colDim() Catalog >

colDim(Matrix)⇒ expression

Returns the number of columns contained inMatrix.

Note: See also rowDim().

colNorm() Catalog >

colNorm(Matrix)⇒ expression

Returns themaximum of the sums of the absolute
values of the elements in the columns inMatrix.

Note: Undefinedmatrix elements are not allowed. See
also rowNorm().

conj() Catalog >

conj(Value1)⇒ value

conj(List1)⇒ list

conj(Matrix1)⇒ matrix

Returns the complex conjugate of the argument.

constructMat() Catalog >

constructMat(Expr,Var1,Var2,numRows,numCols)
⇒ matrix

Returns amatrix based on the arguments.

Expr is an expression in variables Var1 andVar2.
Elements in the resultingmatrix are formed by

constructMat() Catalog >

evaluatingExpr for each incremented value of Var1
andVar2.

Var1 is automatically incremented from 1 through
numRows. Within each row, Var2 is incremented from
1 through numCols.

CopyVar Catalog >

CopyVar Var1, Var2

CopyVar Var1., Var2.

CopyVar Var1, Var2 copies the value of variableVar1
to variableVar2, creatingVar2 if necessary. Variable
Var1must have a value.

If Var1 is the name of an existing user-defined
function, copies the definition of that function to
functionVar2. FunctionVar1must be defined.

Var1must meet the variable-naming requirements or
must be an indirection expression that simplifies to a
variable namemeeting the requirements.

CopyVar Var1., Var2. copies all members of the
Var1. variable group to theVar2. group, creating
Var2. if necessary.

Var1. must be the name of an existing variable group,
such as the statistics stat.nn results, or variables
created using the LibShortcut() function. If Var2.
already exists, this command replaces all members
that are common to both groups and adds the
members that do not already exist. If one or more
members of Var2. are locked, all members of Var2.
are left unchanged.

corrMat() Catalog >

corrMat(List1,List2[,…[,List20]])

Computes the correlationmatrix for the augmentedmatrix
[List1, List2, ..., List20].

Alphabetical Listing 27

28 Alphabetical Listing

cos() µ key

cos(Value1)⇒ value

cos(List1)⇒ list

cos(Value1) returns the cosine of the argument as a
value.

cos(List1) returns a list of the cosines of all elements
in List1.

Note: The argument is interpreted as a degree,
gradian or radian angle, according to the current angle
mode setting. You can use °, G, or r to override the
anglemode temporarily.

In Degree anglemode:

In Gradian anglemode:

In Radian anglemode:

cos(squareMatrix1)⇒ squareMatrix

Returns thematrix cosine of squareMatrix1. This is
not the same as calculating the cosine of each
element.

When a scalar function f(A) operates on
squareMatrix1 (A), the result is calculated by the
algorithm:

Compute the eigenvalues (λi) and eigenvectors (Vi) of
A.

squareMatrix1must be diagonalizable. Also, it
cannot have symbolic variables that have not been
assigned a value.

Form thematrices:

Then A =XBX⁻¹ and f(A) =X f(B) X⁻¹. For example,
cos(A) =X cos(B) X⁻¹ where:

cos(B) =

In Radian anglemode:

cos() µ key

All computations are performed using floating-point
arithmetic.

cos⁻¹() µ key

cos⁻¹(Value1)⇒ value
cos⁻¹(List1)⇒ list

cos⁻¹(Value1) returns the angle whose cosine is
Value1.

cos⁻¹(List1) returns a list of the inverse cosines of
each element of List1.

Note: The result is returned as a degree, gradian or
radian angle, according to the current anglemode
setting.

Note: You can insert this function from the keyboard
by typing arccos(...).

In Degree anglemode:

In Gradian anglemode:

In Radian anglemode:

cos⁻¹(squareMatrix1)⇒ squareMatrix

Returns thematrix inverse cosine of squareMatrix1.
This is not the same as calculating the inverse cosine
of each element. For information about the calculation
method, refer to cos().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

In Radian anglemode and Rectangular Complex
Format:

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

cosh() Catalog >

cosh(Value1)⇒ value
cosh(List1)⇒ list

In Degree anglemode:

Alphabetical Listing 29

30 Alphabetical Listing

cosh() Catalog >

cosh(Value1) returns the hyperbolic cosine of the
argument.

cosh(List1) returns a list of the hyperbolic cosines of
each element of List1.

cosh(squareMatrix1)⇒ squareMatrix

Returns thematrix hyperbolic cosine of
squareMatrix1. This is not the same as calculating
the hyperbolic cosine of each element. For
information about the calculationmethod, refer to cos
().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

In Radian anglemode:

cosh⁻¹() Catalog >

cosh⁻¹(Value1)⇒ value
cosh⁻¹(List1)⇒ list

cosh⁻¹(Value1) returns the inverse hyperbolic cosine
of the argument.

cosh⁻¹(List1) returns a list of the inverse hyperbolic
cosines of each element of List1.

Note: You can insert this function from the keyboard
by typing arccosh(...).

cosh⁻¹(squareMatrix1)⇒ squareMatrix

Returns thematrix inverse hyperbolic cosine of
squareMatrix1. This is not the same as calculating
the inverse hyperbolic cosine of each element. For
information about the calculationmethod, refer to cos
().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

In Radian anglemode and In Rectangular Complex
Format:

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

cot() µ key

In Degree anglemode:

cot() µ key

cot(Value1)⇒ value
cot(List1)⇒ list

Returns the cotangent of Value1 or returns a list of
the cotangents of all elements in List1.

Note: The argument is interpreted as a degree,
gradian or radian angle, according to the current angle
mode setting. You can use °, G, or r to override the
anglemode temporarily.

In Gradian anglemode:

In Radian anglemode:

cot⁻¹() µ key

cot⁻¹(Value1)⇒ value
cot⁻¹(List1)⇒ list

Returns the angle whose cotangent is Value1 or
returns a list containing the inverse cotangents of
each element of List1.

Note: The result is returned as a degree, gradian or
radian angle, according to the current anglemode
setting.

Note: You can insert this function from the keyboard
by typing arccot(...).

In Degree anglemode:

In Gradian anglemode:

In Radian anglemode:

coth() Catalog >

coth(Value1)⇒ value
coth(List1)⇒ list

Returns the hyperbolic cotangent of Value1 or returns
a list of the hyperbolic cotangents of all elements of
List1.

Alphabetical Listing 31

32 Alphabetical Listing

coth⁻¹() Catalog >

coth⁻¹(Value1)⇒ value
coth⁻¹(List1)⇒ list

Returns the inverse hyperbolic cotangent of Value1 or
returns a list containing the inverse hyperbolic
cotangents of each element of List1.

Note: You can insert this function from the keyboard
by typing arccoth(...).

count() Catalog >

count(Value1orList1 [,Value2orList2 [,...]])⇒ value

Returns the accumulated count of all elements in the
arguments that evaluate to numeric values.

Each argument can be an expression, value, list, or
matrix. You canmix data types and use arguments of
various dimensions.

For a list, matrix, or range of cells, each element is
evaluated to determine if it should be included in the
count.

Within the Lists & Spreadsheet application, you can
use a range of cells in place of any argument.

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

countif() Catalog >

countif(List,Criteria)⇒ value

Returns the accumulated count of all elements in List
that meet the specifiedCriteria.

Criteria can be:

• A value, expression, or string. For example, 3
counts only those elements in List that simplify
to the value 3.

• A Boolean expression containing the symbol ?

Counts the number of elements equal to 3.

Counts the number of elements equal to “def.”

countif() Catalog >

as a placeholder for each element. For
example, ?<5 counts only those elements in
List that are less than 5.

Within the Lists & Spreadsheet application, you can
use a range of cells in place of List.

Empty (void) elements in the list are ignored. For
more information on empty elements, see page 177.

Note: See also sumIf(), page 135, and frequency(),
page 54.

Counts 1 and 3.

Counts 3, 5, and 7.

Counts 1, 3, 7, and 9.

cPolyRoots() Catalog >

cPolyRoots(Poly,Var)⇒ list

cPolyRoots(ListOfCoeffs)⇒ list

The first syntax, cPolyRoots(Poly,Var), returns a list
of complex roots of polynomial Poly with respect to
variableVar.

Poly must be a polynomial in expanded form in one
variable. Do not use unexpanded forms such as
y2•y+1 or x•x+2•x+1

The second syntax, cPolyRoots(ListOfCoeffs),
returns a list of complex roots for the coefficients in
ListOfCoeffs.

Note: See also polyRoots(), page 101.

crossP() Catalog >

crossP(List1, List2)⇒ list

Returns the cross product of List1 and List2 as a list.

List1 and List2must have equal dimension, and the
dimensionmust be either 2 or 3.

crossP(Vector1, Vector2)⇒ vector

Returns a row or column vector (depending on the
arguments) that is the cross product of Vector1 and

Alphabetical Listing 33

34 Alphabetical Listing

crossP() Catalog >

Vector2.

BothVector1 andVector2must be row vectors, or
bothmust be column vectors. Both vectors must
have equal dimension, and the dimensionmust be
either 2 or 3.

csc() µ key

csc(Value1)⇒ value
csc(List1)⇒ list

Returns the cosecant of Value1 or returns a list
containing the cosecants of all elements in List1.

In Degree anglemode:

In Gradian anglemode:

In Radian anglemode:

csc⁻¹() µ key

csc⁻¹(Value1)⇒value
csc⁻¹(List1)⇒list

Returns the angle whose cosecant is Value1 or
returns a list containing the inverse cosecants of each
element of List1.

Note: The result is returned as a degree, gradian or
radian angle, according to the current anglemode
setting.

Note: You can insert this function from the keyboard
by typing arccsc(...).

In Degree anglemode:

In Gradian anglemode:

In Radian anglemode:

csch() Catalog >

csch(Value1)⇒ value

csch(List1)⇒ list

Returns the hyperbolic cosecant of Value1 or returns
a list of the hyperbolic cosecants of all elements of
List1.

csch⁻¹() Catalog >

csch⁻¹(Value)⇒ value
csch⁻¹(List1)⇒ list

Returns the inverse hyperbolic cosecant of Value1 or
returns a list containing the inverse hyperbolic
cosecants of each element of List1.

Note: You can insert this function from the keyboard
by typing arccsch(...).

CubicReg Catalog >

CubicRegX, Y[, [Freq] [, Category, Include]]

Computes the cubic polynomial regression y=a•x3+b•x2+c•x+d
on lists X and Y with frequency Freq. A summary of results is
stored in the stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Alphabetical Listing 35

36 Alphabetical Listing

Output
variable

Description

stat.RegEqn Regression equation: a•x3+b•x2+c•x+d

stat.a, stat.b,
stat.c, stat.d

Regression coefficients

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

cumulativeSum() Catalog >

cumulativeSum(List1)⇒ list

Returns a list of the cumulative sums of the elements
in List1, starting at element 1.

cumulativeSum(Matrix1)⇒ matrix

Returns amatrix of the cumulative sums of the
elements inMatrix1. Each element is the cumulative
sum of the column from top to bottom.

An empty (void) element in List1 orMatrix1 produces
a void element in the resulting list or matrix. For more
information on empty elements, see page 177.

Cycle Catalog >

Cycle

Transfers control immediately to the next iteration of
the current loop (For,While, or Loop).

Cycle is not allowed outside the three looping
structures (For,While, or Loop).

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Function listing that sums the integers from 1 to 100
skipping 50.

►Cylind Catalog >

Vector►Cylind

Note: You can insert this operator from the computer
keyboard by typing @>Cylind.

Displays the row or column vector in cylindrical form
[r,∠θ, z].

Vectormust have exactly three elements. It can be
either a row or a column.

D

dbd() Catalog >

dbd(date1,date2)⇒ value

Returns the number of days between date1 and date2
using the actual-day-count method.

date1 and date2 can be numbers or lists of numbers
within the range of the dates on the standard
calendar. If both date1 and date2 are lists, they must
be the same length.

date1 and date2must be between the years 1950
through 2049.

You can enter the dates in either of two formats. The
decimal placement differentiates between the date
formats.

MM.DDYY (format used commonly in the United
States)
DDMM.YY (format use commonly in Europe)

►DD Catalog >

Expr1►DD⇒ valueList1
►DD⇒ listMatrix1
►DD⇒ matrix

Note: You can insert this operator from the computer
keyboard by typing @>DD.

Returns the decimal equivalent of the argument

In Degree anglemode:

Alphabetical Listing 37

38 Alphabetical Listing

►DD Catalog >

expressed in degrees. The argument is a number, list,
or matrix that is interpreted by the Anglemode setting
in gradians, radians or degrees.

In Gradian anglemode:

In Radian anglemode:

►Decimal Catalog >

Number1 ►Decimal⇒ value

List1 ►Decimal⇒ value

Matrix1 ►Decimal⇒ value

Note: You can insert this operator from the computer
keyboard by typing @>Decimal.

Displays the argument in decimal form. This operator
can be used only at the end of the entry line.

Define Catalog >

DefineVar = Expression
DefineFunction(Param1, Param2, ...) = Expression

Defines the variableVar or the user-defined function
Function.

Parameters, such as Param1, provide placeholders
for passing arguments to the function. When calling a
user-defined function, youmust supply arguments
(for example, values or variables) that correspond to
the parameters. When called, the function evaluates
Expression using the supplied arguments.

Var andFunction cannot be the name of a system
variable or built-in function or command.

Note: This form of Define is equivalent to executing
the expression: expression→Function
(Param1,Param2).

Define Catalog >

DefineFunction(Param1, Param2, ...) = Func
 Block
EndFunc

DefineProgram(Param1, Param2, ...) = Prgm
 Block
EndPrgm

In this form, the user-defined function or program can
execute a block of multiple statements.

Block can be either a single statement or a series of
statements on separate lines. Block also can include
expressions and instructions (such as If, Then, Else,
and For).

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Note: See alsoDefine LibPriv, page 39, andDefine
LibPub, page 40.

Define LibPriv Catalog >

Define LibPriv Var = Expression
Define LibPriv Function(Param1, Param2, ...) = Expression

Define LibPriv Function(Param1, Param2, ...) = Func
 Block
EndFunc

Define LibPriv Program(Param1, Param2, ...) = Prgm
 Block
EndPrgm

Operates the same as Define, except defines a private library
variable, function, or program. Private functions and programs do
not appear in the Catalog.

Note: See alsoDefine, page 38, andDefine LibPub, page 40.

Alphabetical Listing 39

40 Alphabetical Listing

Define LibPub Catalog >

Define LibPubVar = Expression
Define LibPubFunction(Param1, Param2, ...) = Expression

Define LibPubFunction(Param1, Param2, ...) = Func
 Block
EndFunc

Define LibPubProgram(Param1, Param2, ...) = Prgm
 Block
EndPrgm

Operates the same as Define, except defines a public library
variable, function, or program. Public functions and programs
appear in the Catalog after the library has been saved and
refreshed.

Note: See alsoDefine, page 38, andDefine LibPriv, page 39.

deltaList() See ΔList(), page 73.

DelVar Catalog >

DelVar Var1[, Var2] [, Var3] ...

DelVar Var.

Deletes the specified variable or variable group from
memory.

If one or more of the variables are locked, this
command displays an error message and deletes only
the unlocked variables. See unLock, page 147.

DelVar Var. deletes all members of theVar. variable
group (such as the statistics stat.nn results or
variables created using the LibShortcut() function).
The dot (.) in this form of theDelVar command limits it
to deleting a variable group; the simple variableVar is
not affected.

delVoid() Catalog >

delVoid(List1)⇒ list

Returns a list that has the contents of List1with all
empty (void) elements removed.

For more information on empty elements, see page
177.

det() Catalog >

det(squareMatrix[, Tolerance])⇒ expression

Returns the determinant of squareMatrix.

Optionally, any matrix element is treated as zero if its
absolute value is less than Tolerance. This tolerance
is used only if thematrix has floating-point entries and
does not contain any symbolic variables that have not
been assigned a value. Otherwise, Tolerance is
ignored.

• If you use/· or set the Auto or
Approximatemode to Approximate,
computations are done using floating-point
arithmetic.

• If Tolerance is omitted or not used, the default
tolerance is calculated as:
5E⁻14 •max(dim(squareMatrix))•rowNorm
(squareMatrix)

diag() Catalog >

diag(List)⇒ matrix
diag(rowMatrix)⇒ matrix
diag(columnMatrix)⇒ matrix

Returns amatrix with the values in the argument list
or matrix in its main diagonal.

diag(squareMatrix)⇒ rowMatrix

Returns a row matrix containing the elements from
themain diagonal of squareMatrix.

squareMatrix must be square.

Alphabetical Listing 41

42 Alphabetical Listing

dim() Catalog >

dim(List)⇒ integer

Returns the dimension of List.

dim(Matrix)⇒ list

Returns the dimensions of matrix as a two-element
list {rows, columns}.

dim(String)⇒ integer

Returns the number of characters contained in
character string String.

Disp Catalog >

Disp [exprOrString1] [, exprOrString2] ...

Displays the arguments in theCalculator history.
The arguments are displayed in succession, with thin
spaces as separators.

Useful mainly in programs and functions to ensure the
display of intermediate calculations.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

►DMS Catalog >

Value ►DMS

List ►DMS

Matrix ►DMS

Note: You can insert this operator from the computer
keyboard by typing @>DMS.

Interprets the argument as an angle and displays the
equivalent DMS (DDDDDD°MM'SS.ss'') number.
See °, ', '' on page 172 for DMS (degree, minutes,

In Degree anglemode:

►DMS Catalog >

seconds) format.

Note:►DMSwill convert from radians to degrees
when used in radianmode. If the input is followed by a
degree symbol ° , no conversion will occur. You can
use►DMS only at the end of an entry line.

dotP() Catalog >

dotP(List1, List2)⇒ expression

Returns the “dot” product of two lists.

dotP(Vector1, Vector2)⇒ expression

Returns the “dot” product of two vectors.

Bothmust be row vectors, or bothmust be column
vectors.

E

e^() u key

e^(Value1)⇒ value

Returns e raised to theValue1 power.

Note: See also e exponent template, page 6.

Note: Pressingu to display e^(is different from
pressing the characterE on the keyboard.

You can enter a complex number in reiθ polar form.
However, use this form in Radian anglemode only; it
causes a Domain error in Degree or Gradian angle
mode.

e^(List1)⇒ list

Returns e raised to the power of each element in
List1.

Alphabetical Listing 43

44 Alphabetical Listing

e^() u key

e^(squareMatrix1)⇒ squareMatrix

Returns thematrix exponential of squareMatrix1.
This is not the same as calculating e raised to the
power of each element. For information about the
calculationmethod, refer to cos().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

eff() Catalog >

eff(nominalRate,CpY)⇒ value

Financial function that converts the nominal interest
rate nominalRate to an annual effective rate, given
CpY as the number of compounding periods per year.

nominalRate must be a real number, andCpYmust
be a real number > 0.

Note: See also nom(), page 91.

eigVc() Catalog >

eigVc(squareMatrix)⇒ matrix

Returns amatrix containing the eigenvectors for a
real or complex squareMatrix, where each column in
the result corresponds to an eigenvalue. Note that an
eigenvector is not unique; it may be scaled by any
constant factor. The eigenvectors are normalized,
meaning that:

if V = [x1, x2, … , xn]

then x1
2 + x2

2 + … + xn
2 =1

squareMatrix is first balanced with similarity
transformations until the row and column norms are
as close to the same value as possible. The
squareMatrix is then reduced to upper Hessenberg
form and the eigenvectors are computed via a Schur
factorization.

In Rectangular Complex Format:

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

eigVl() Catalog >

eigVl(squareMatrix)⇒ list

Returns a list of the eigenvalues of a real or complex
squareMatrix.

squareMatrix is first balanced with similarity
transformations until the row and column norms are
as close to the same value as possible. The
squareMatrix is then reduced to upper Hessenberg
form and the eigenvalues are computed from the
upper Hessenbergmatrix.

In Rectangular complex format mode:

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

Else See If, page 61.

ElseIf Catalog >

If BooleanExpr1 Then
 Block1
ElseIf BooleanExpr2 Then
 Block2
⋮

ElseIf BooleanExprN Then
 BlockN
EndIf

⋮

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

EndFor See For, page 52.

EndFunc See Func, page 55.

Alphabetical Listing 45

46 Alphabetical Listing

EndIf See If, page 61.

EndLoop See Loop, page 79.

EndPrgm See Prgm, page 102.

EndTry See Try, page 141.

EndWhile SeeWhile, page 149.

euler () Catalog >

euler(Expr, Var, depVar, {Var0, VarMax}, depVar0,
VarStep [, eulerStep])⇒ matrix

euler(SystemOfExpr, Var, ListOfDepVars, {Var0,
VarMax}, ListOfDepVars0, VarStep [, eulerStep])
⇒ matrix

euler(ListOfExpr, Var, ListOfDepVars, {Var0,
VarMax}, ListOfDepVars0, VarStep [, eulerStep])⇒
matrix

Uses the Euler method to solve the system

with depVar(Var0)=depVar0 on the interval
[Var0,VarMax]. Returns amatrix whose first row
defines theVar output values and whose second row
defines the value of the first solution component at
the correspondingVar values, and so on.

Expr is the right-hand side that defines the ordinary
differential equation (ODE).

Differential equation:
y'=0.001*y*(100-y) and y(0)=10

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

System of equations:

with y1(0)=2 and y2(0)=5

euler () Catalog >

SystemOfExpr is the system of right-hand sides that
define the system of ODEs (corresponds to order of
dependent variables in ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the
system of ODEs (corresponds to the order of
dependent variables in ListOfDepVars).

Var is the independent variable.

ListOfDepVars is a list of dependent variables.

{Var0, VarMax} is a two-element list that tells the
function to integrate from Var0 toVarMax.

ListOfDepVars0 is a list of initial values for dependent
variables.

VarStep is a nonzero number such that sign(VarStep)
= sign(VarMax-Var0) and solutions are returned at
Var0+i•VarStep for all i=0,1,2,… such that
Var0+i•VarStep is in [var0,VarMax] (theremay not
be a solution value at VarMax).

eulerStep is a positive integer (defaults to 1) that
defines the number of euler steps between output
values. The actual step size used by the euler method
is VarStep ⁄ eulerStep.

Exit Catalog >

Exit

Exits the current For,While, or Loop block.

Exit is not allowed outside the three looping structures
(For,While, or Loop).

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Function listing:

Alphabetical Listing 47

48 Alphabetical Listing

exp() u key

exp(Value1)⇒ value

Returns e raised to theValue1 power.

Note: See also e exponent template, page 6.

You can enter a complex number in reiθ polar form.
However, use this form in Radian anglemode only; it
causes a Domain error in Degree or Gradian angle
mode.

exp(List1)⇒ list

Returns e raised to the power of each element in
List1.

exp(squareMatrix1)⇒ squareMatrix

Returns thematrix exponential of squareMatrix1.
This is not the same as calculating e raised to the
power of each element. For information about the
calculationmethod, refer to cos().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

expr() Catalog >

expr(String)⇒ expression

Returns the character string contained in String as an
expression and immediately executes it.

ExpReg Catalog >

ExpRegX, Y [, [Freq] [, Category, Include]]

Computes the exponential regression y = a•(b)x on lists X and Y
with frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX

ExpReg Catalog >

and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output
variable

Description

stat.RegEqn Regression equation: a•(b)x

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformed data

stat.r Correlation coefficient for transformed data (x, ln(y))

stat.Resid Residuals associated with the exponential model

stat.ResidTrans Residuals associated with linear fit of transformed data

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

F

factor() Catalog >

factor(rationalNumber) returns the rational number
factored into primes. For composite numbers, the
computing time grows exponentially with the number
of digits in the second-largest factor. For example,
factoring a 30-digit integer could takemore than a
day, and factoring a 100-digit number could takemore
than a century.

To stop a calculationmanually,

Alphabetical Listing 49

50 Alphabetical Listing

factor() Catalog >

• Windows®: Hold down the F12 key and press
Enter repeatedly.

• Macintosh®: Hold down the F5 key and press
Enter repeatedly.

• Handheld: Hold down thec key and press
· repeatedly.

If youmerely want to determine if a number is prime,
use isPrime() instead. It is much faster, particularly if
rationalNumber is not prime and if the second-largest
factor has more than five digits.

FCdf() Catalog >

FCdf(lowBound,upBound,dfNumer,dfDenom)⇒ number if
lowBound and upBound are numbers, list if lowBound and
upBound are lists

FCdf(lowBound,upBound,dfNumer,dfDenom)⇒ number if
lowBound and upBound are numbers, list if lowBound and
upBound are lists

Computes the F distribution probability between lowBound and
upBound for the specified dfNumer (degrees of freedom) and
dfDenom.

For P(X ≤ upBound), set lowBound =0.

Fill Catalog >

FillValue, matrixVar⇒ matrix

Replaces each element in variablematrixVarwith
Value.

matrixVarmust already exist.

FillValue, listVar⇒ list

Replaces each element in variable listVarwithValue.

listVarmust already exist.

FiveNumSummary Catalog >

FiveNumSummary X[,[Freq][,Category,Include]]

Provides an abbreviated version of the 1-variable statistics on list
X. A summary of results is stored in the stat.results variable.
(See page 131.)

X represents a list containing the data.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1.

Category is a list of numeric category codes for the
correspondingX data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

An empty (void) element in any of the lists X, Freq, orCategory
results in a void for the corresponding element of all those lists.
For more information on empty elements, see page 177.

Output variable Description

stat.MinX Minimum of x values.

stat.Q1X 1st Quartile of x.

stat.MedianX Median of x.

stat.Q3X 3rd Quartile of x.

stat.MaxX Maximum of x values.

floor() Catalog >

floor(Value1)⇒ integer

Returns the greatest integer that is ≤ the argument.
This function is identical to int().

The argument can be a real or a complex number.

floor(List1)⇒ list
floor(Matrix1)⇒ matrix

Returns a list or matrix of the floor of each element.

Note: See also ceiling() and int().

Alphabetical Listing 51

52 Alphabetical Listing

For Catalog >

For Var, Low, High [, Step]
 Block
EndFor

Executes the statements inBlock iteratively for each
value of Var, from Low toHigh, in increments of Step.

Varmust not be a system variable.

Step can be positive or negative. The default value is
1.

Block can be either a single statement or a series of
statements separated with the “:” character.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

format() Catalog >

format(Value[, formatString])⇒ string

Returns Value as a character string based on the
format template.

formatString is a string andmust be in the form: “F
[n]”, “S[n]”, “E[n]”, “G[n][c]”, where [] indicate optional
portions.

F[n]: Fixed format. n is the number of digits to display
after the decimal point.

S[n]: Scientific format. n is the number of digits to
display after the decimal point.

E[n]: Engineering format. n is the number of digits
after the first significant digit. The exponent is
adjusted to amultiple of three, and the decimal point
is moved to the right by zero, one, or two digits.

G[n][c]: Same as fixed format but also separates
digits to the left of the radix into groups of three. c
specifies the group separator character and defaults
to a comma. If c is a period, the radix will be shown as
a comma.

format() Catalog >

[Rc]: Any of the above specifiers may be suffixed
with the Rc radix flag, where c is a single character
that specifies what to substitute for the radix point.

fPart() Catalog >

fPart(Expr1)⇒ expression
fPart(List1)⇒ list
fPart(Matrix1)⇒ matrix

Returns the fractional part of the argument.

For a list or matrix, returns the fractional parts of the
elements.

The argument can be a real or a complex number.

FPdf() Catalog >

FPdf(XVal,dfNumer,dfDenom)⇒ number if XVal is a number,
list if XVal is a list

Computes the F distribution probability at XVal for the specified
dfNumer (degrees of freedom) and dfDenom.

freqTable►list() Catalog >

freqTable►list(List1,freqIntegerList)⇒ list

Returns a list containing the elements from List1
expanded according to the frequencies in
freqIntegerList. This function can be used for building
a frequency table for the Data & Statistics application.

List1 can be any valid list.

freqIntegerListmust have the same dimension as
List1 andmust contain non-negative integer elements
only. Each element specifies the number of times the
corresponding List1 element will be repeated in the
result list. A value of zero excludes the corresponding
List1 element.

Note: You can insert this function from the computer
keyboard by typing freqTable@>list(...).

Alphabetical Listing 53

54 Alphabetical Listing

freqTable►list() Catalog >

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

frequency() Catalog >

frequency(List1,binsList)⇒ list

Returns a list containing counts of the elements in
List1. The counts are based on ranges (bins) that you
define in binsList.

If binsList is {b(1), b(2), …, b(n)}, the specified ranges
are {?≤b(1), b(1)<?≤b(2),…,b(n-1)<?≤b(n), b(n)>?}. The
resulting list is one element longer than binsList.

Each element of the result corresponds to the number
of elements from List1 that are in the range of that
bin. Expressed in terms of the countIf() function, the
result is { countIf(list, ?≤b(1)), countIf(list, b(1)<?≤b
(2)), …, countIf(list, b(n-1)<?≤b(n)), countIf(list, b(n)
>?)}.

Elements of List1 that cannot be “placed in a bin” are
ignored. Empty (void) elements are also ignored. For
more information on empty elements, see page 177.

Within the Lists & Spreadsheet application, you can
use a range of cells in place of both arguments.

Note: See also countIf(), page 32.

Explanation of result:

2 elements from Datalist are ≤2.5

4 elements from Datalist are >2.5 and ≤4.5

3 elements from Datalist are >4.5

The element “hello” is a string and cannot be placed
in any of the defined bins.

FTest_2Samp Catalog >

FTest_2Samp List1,List2[,Freq1[,Freq2[,Hypoth]]]

FTest_2Samp List1,List2[,Freq1[,Freq2[,Hypoth]]]

(Data list input)

FTest_2Samp sx1,n1,sx2,n2[,Hypoth]

FTest_2Samp sx1,n1,sx2,n2[,Hypoth]

(Summary stats input)

Performs a two-sample F test. A summary of results is stored in
the stat.results variable. (See page 131.)

FTest_2Samp Catalog >

For Ha: σ1 > σ2, set Hypoth>0
For Ha: σ1 ≠ σ2 (default), set Hypoth =0
For Ha: σ1 < σ2, set Hypoth<0

For information on the effect of empty elements in a list, see
Empty (Void) Elements, page 177.

Output variable Description

stat.F Calculated F statistic for the data sequence

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.dfNumer numerator degrees of freedom = n1-1

stat.dfDenom denominator degrees of freedom = n2-1

stat.sx1, stat.sx2 Sample standard deviations of the data sequences in List 1 and List 2

stat.x1_bar
stat.x2_bar

Samplemeans of the data sequences in List 1 and List 2

stat.n1, stat.n2 Size of the samples

Func Catalog >

Func
 Block
EndFunc

Template for creating a user-defined function.

Block can be a single statement, a series of
statements separated with the “:” character, or a
series of statements on separate lines. The function
can use theReturn instruction to return a specific
result.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Define a piecewise function:

Result of graphing g(x)

Alphabetical Listing 55

56 Alphabetical Listing

G

gcd() Catalog >

gcd(Number1, Number2)⇒ expression

Returns the greatest common divisor of the two
arguments. The gcd of two fractions is the gcd of their
numerators divided by the lcm of their denominators.

In Auto or Approximatemode, the gcd of fractional
floating-point numbers is 1.0.

gcd(List1, List2)⇒ list

Returns the greatest common divisors of the
corresponding elements in List1 and List2.

gcd(Matrix1, Matrix2)⇒ matrix

Returns the greatest common divisors of the
corresponding elements inMatrix1 andMatrix2.

geomCdf() Catalog >

geomCdf(p,lowBound,upBound)⇒ number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

geomCdf(p,upBound)for P(1≤X≤upBound)⇒ number if upBound
is a number, list if upBound is a list

Computes a cumulative geometric probability from lowBound to
upBoundwith the specified probability of success p.

For P(X ≤ upBound), set lowBound =1.

geomPdf() Catalog >

geomPdf(p,XVal)⇒ number if XVal is a number, list if XVal is a
list

Computes a probability at XVal, the number of the trial on which
the first success occurs, for the discrete geometric distribution
with the specified probability of success p.

getDenom() Catalog >

getDenom(Fraction1)⇒ value

Transforms the argument into an expression having a
reduced common denominator, and then returns its
denominator.

getLangInfo() Catalog >

getLangInfo()⇒ string

Returns a string that corresponds to the short name
of the currently active language. You can, for
example, use it in a program or function to determine
the current language.

English = “en”
Danish = “da”
German = “de”
Finnish = “fi”
French = “fr”
Italian = “it”
Dutch = “nl”
Belgian Dutch = “nl_BE”
Norwegian = “no”
Portuguese = “pt”
Spanish = “es”
Swedish = “sv”

getLockInfo() Catalog >

getLockInfo(Var)⇒ value

Returns the current locked/unlocked state of variable
Var.

value =0: Var is unlocked or does not exist.

value =1: Var is locked and cannot bemodified or
deleted.

See Lock, page 76, and unLock, page 147.

Alphabetical Listing 57

58 Alphabetical Listing

getMode() Catalog >

getMode(ModeNameInteger)⇒ value

getMode(0)⇒ list

getMode(ModeNameInteger) returns a value
representing the current setting of the
ModeNameIntegermode.

getMode(0) returns a list containing number pairs.
Each pair consists of amode integer and a setting
integer.

For a listing of themodes and their settings, refer to
the table below.

If you save the settings with getMode(0)→ var, you
can use setMode(var) in a function or program to
temporarily restore the settings within the execution
of the function or program only. See setMode(), page
122.

Mode
Name

Mode
Integer Setting Integers

Display
Digits

1 1=Float, 2=Float1, 3=Float2, 4=Float3, 5=Float4, 6=Float5, 7=Float6,
8=Float7, 9=Float8, 10=Float9, 11=Float10, 12=Float11, 13=Float12,
14=Fix0, 15=Fix1, 16=Fix2, 17=Fix3, 18=Fix4, 19=Fix5, 20=Fix6, 21=Fix7,
22=Fix8, 23=Fix9, 24=Fix10, 25=Fix11, 26=Fix12

Angle 2 1=Radian, 2=Degree, 3=Gradian

Exponential
Format

3 1=Normal, 2=Scientific, 3=Engineering

Real or
Complex

4 1=Real, 2=Rectangular, 3=Polar

Auto or
Approx.

5 1=Auto, 2=Approximate

Vector
Format

6 1=Rectangular, 2=Cylindrical, 3=Spherical

Base 7 1=Decimal, 2=Hex, 3=Binary

getNum() Catalog >

getNum(Fraction1)⇒ value

Transforms the argument into an expression having a
reduced common denominator, and then returns its
numerator.

getType() Catalog >

getType(var)⇒ string

Returns a string that indicates the data type of
variable var.

If var has not been defined, returns the string
"NONE".

getVarInfo() Catalog >

getVarInfo()⇒ matrix or string

getVarInfo(LibNameString)⇒ matrix or string

getVarInfo() returns amatrix of information (variable
name, type, library accessibility, and locked/unlocked
state) for all variables and library objects defined in
the current problem.

If no variables are defined, getVarInfo() returns the
string "NONE".

getVarInfo(LibNameString)returns amatrix of
information for all library objects defined in library
LibNameString. LibNameStringmust be a string
(text enclosed in quotationmarks) or a string variable.

If the library LibNameString does not exist, an error
occurs.

Alphabetical Listing 59

60 Alphabetical Listing

getVarInfo() Catalog >

Note the example, in which the result of getVarInfo()
is assigned to variable vs. Attempting to display row 2
or row 3 of vs returns an “Invalid list or matrix” error
because at least one of elements in those rows
(variable b, for example) revaluates to amatrix.

This error could also occur when usingAns to
reevaluate a getVarInfo() result.

The system gives the above error because the
current version of the software does not support a
generalizedmatrix structure where an element of a
matrix can be either amatrix or a list.

Goto Catalog >

Goto labelName

Transfers control to the label labelName.

labelName must be defined in the same function
using a Lbl instruction.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

►Grad Catalog >

Expr1►Grad⇒ expression

Converts Expr1 to gradian anglemeasure.

Note: You can insert this operator from the computer
keyboard by typing @>Grad.

In Degree anglemode:

In Radian anglemode:

I

identity() Catalog >

identity(Integer)⇒ matrix

Returns the identity matrix with a dimension of
Integer.

Integermust be a positive integer.

If Catalog >

If BooleanExpr
Statement

If BooleanExpr Then
Block

EndIf

If BooleanExpr evaluates to true, executes the single
statement Statement or the block of statements
Block before continuing execution.

If BooleanExpr evaluates to false, continues
execution without executing the statement or block of
statements.

Block can be either a single statement or a sequence
of statements separated with the “:” character.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

If BooleanExpr Then
 Block1
Else
 Block2
EndIf

If BooleanExpr evaluates to true, executes Block1
and then skips Block2.

If BooleanExpr evaluates to false, skips Block1 but
executes Block2.

Block1 andBlock2 can be a single statement.

Alphabetical Listing 61

62 Alphabetical Listing

If Catalog >

If BooleanExpr1 Then
 Block1
ElseIf BooleanExpr2 Then
 Block2
⋮

ElseIf BooleanExprN Then
 BlockN
EndIf

Allows for branching. If BooleanExpr1 evaluates to
true, executes Block1. If BooleanExpr1 evaluates to
false, evaluates BooleanExpr2, and so on.

ifFn() Catalog >

ifFn(BooleanExpr,Value_If_true [,Value_If_false
[,Value_If_unknown]])⇒ expression, list, or matrix

Evaluates the boolean expressionBooleanExpr (or
each element from BooleanExpr) and produces a
result based on the following rules:

• BooleanExpr can test a single value, a list, or a
matrix.

• If an element of BooleanExpr evaluates to true,
returns the corresponding element from Value_
If_true.

• If an element of BooleanExpr evaluates to
false, returns the corresponding element from
Value_If_false. If you omit Value_If_false,
returns undef.

• If an element of BooleanExpr is neither true nor
false, returns the corresponding element
Value_If_unknown. If you omit Value_If_
unknown, returns undef.

• If the second, third, or fourth argument of the
ifFn() function is a single expression, the
Boolean test is applied to every position in
BooleanExpr.

Note: If the simplifiedBooleanExpr statement
involves a list or matrix, all other list or matrix

Test value of 1 is less than 2.5, so its corresponding

Value_If_True element of 5 is copied to the result list.

Test value of 2 is less than 2.5, so its corresponding

Value_If_True element of 6 is copied to the result list.

Test value of 3 is not less than 2.5, so its
correspondingValue_If_False element of 10 is copied
to the result list.

Value_If_true is a single value and corresponds to
any selected position.

Value_If_false is not specified. Undef is used.

ifFn() Catalog >

arguments must have the same dimension(s), and
the result will have the same dimension(s).

One element selected from Value_If_true. One
element selected from Value_If_unknown.

imag() Catalog >

imag(Value1)⇒ value

Returns the imaginary part of the argument.

imag(List1)⇒ list

Returns a list of the imaginary parts of the elements.

imag(Matrix1)⇒ matrix

Returns amatrix of the imaginary parts of the
elements.

Indirection See #(), page 170.

inString() Catalog >

inString(srcString, subString[, Start])⇒ integer

Returns the character position in string srcString at
which the first occurrence of string subString begins.

Start, if included, specifies the character position
within srcStringwhere the search begins. Default = 1
(the first character of srcString).

If srcString does not contain subString or Start is >
the length of srcString, returns zero.

int() Catalog >

int(Value)⇒ integer
int(List1)⇒ list
int(Matrix1)⇒ matrix

Alphabetical Listing 63

64 Alphabetical Listing

int() Catalog >

Returns the greatest integer that is less than or equal
to the argument. This function is identical to floor().

The argument can be a real or a complex number.

For a list or matrix, returns the greatest integer of
each of the elements.

intDiv() Catalog >

intDiv(Number1, Number2)⇒ integer
intDiv(List1, List2)⇒ list
intDiv(Matrix1,Matrix2)⇒ matrix

Returns the signed integer part of
(Number1 ÷Number2).

For lists andmatrices, returns the signed integer part
of (argument 1 ÷ argument 2) for each element pair.

interpolate () Catalog >

interpolate(xValue, xList, yList, yPrimeList)⇒ list

This function does the following:

Given xList, yList=f(xList), and yPrimeList=f'(xList)
for some unknown function f, a cubic interpolant is
used to approximate the function f at xValue. It is
assumed that xList is a list of monotonically
increasing or decreasing numbers, but this function
may return a value even when it is not. This function
walks through xList looking for an interval [xList[i],
xList[i+1]] that contains xValue. If it finds such an
interval, it returns an interpolated value for f(xValue);
otherwise, it returns undef.

xList, yList, and yPrimeListmust be of equal
dimension ≥ 2 and contain expressions that simplify
to numbers.

xValue can be a number or a list of numbers.

Differential equation:
y'=-3•y+6•t+5 and y(0)=5

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

Use the interpolate() function to calculate the function
values for the xvaluelist:

invχ2() Catalog >

invχ2(Area,df)

invChi2(Area,df)

Computes the Inverse cumulative χ2 (chi-square) probability
function specified by degree of freedom, df for a givenArea
under the curve.

invF() Catalog >

invF(Area,dfNumer,dfDenom)

invF(Area,dfNumer,dfDenom)

computes the Inverse cumulative F distribution function
specified by dfNumer and dfDenom for a givenArea under the
curve.

invNorm() Catalog >

invNorm(Area[,μ[,σ]])

Computes the inverse cumulative normal distribution function for
a givenArea under the normal distribution curve specified by μ
and σ.

invt() Catalog >

invt(Area,df)

Computes the inverse cumulative student-t probability function
specified by degree of freedom, df for a givenArea under the
curve.

iPart() Catalog >

iPart(Number)⇒ integer
iPart(List1)⇒ list
iPart(Matrix1)⇒ matrix

Returns the integer part of the argument.

For lists andmatrices, returns the integer part of each
element.

The argument can be a real or a complex number.

Alphabetical Listing 65

66 Alphabetical Listing

irr() Catalog >

irr(CF0,CFList [,CFFreq])⇒ value

Financial function that calculates internal rate of
return of an investment.

CF0 is the initial cash flow at time 0; it must be a real
number.

CFList is a list of cash flow amounts after the initial
cash flow CF0.

CFFreq is an optional list in which each element
specifies the frequency of occurrence for a grouped
(consecutive) cash flow amount, which is the
corresponding element of CFList. The default is 1; if
you enter values, they must be positive integers <
10,000.

Note: See alsomirr(), page 84.

isPrime() Catalog >

isPrime(Number)⇒ Boolean constant expression

Returns true or false to indicate if number is a whole
number ≥ 2 that is evenly divisible only by itself and 1.

If Number exceeds about 306 digits and has no
factors ≤1021, isPrime(Number) displays an error
message.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Function to find the next prime after a specified
number:

isVoid() Catalog >

isVoid(Var)⇒ Boolean constant expression
isVoid(Expr)⇒ Boolean constant expression
isVoid(List)⇒ list of Boolean constant expressions

Returns true or false to indicate if the argument is a
void data type.

For more information on void elements, see page 177.

L

Lbl Catalog >

Lbl labelName

Defines a label with the name labelName within a
function.

You can use aGoto labelName instruction to transfer
control to the instruction immediately following the
label.

labelName must meet the same naming
requirements as a variable name.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

lcm() Catalog >

lcm(Number1, Number2)⇒ expression
lcm(List1, List2)⇒ list
lcm(Matrix1,Matrix2)⇒ matrix

Returns the least commonmultiple of the two
arguments. The lcm of two fractions is the lcm of their
numerators divided by the gcd of their denominators.
The lcm of fractional floating-point numbers is their
product.

For two lists or matrices, returns the least common
multiples of the corresponding elements.

left() Catalog >

left(sourceString[, Num])⇒ string

Returns the leftmost Num characters contained in
character string sourceString.

If you omit Num, returns all of sourceString.

left(List1[, Num])⇒ list

Alphabetical Listing 67

68 Alphabetical Listing

left() Catalog >

Returns the leftmost Num elements contained in
List1.

If you omit Num, returns all of List1.

left(Comparison)⇒ expression

Returns the left-hand side of an equation or inequality.

libShortcut() Catalog >

libShortcut(LibNameString, ShortcutNameString
[, LibPrivFlag])⇒ list of variables

Creates a variable group in the current problem that
contains references to all the objects in the specified
library document libNameString. Also adds the group
members to the Variables menu. You can then refer to
each object using its ShortcutNameString.

Set LibPrivFlag=0 to exclude private library objects
(default)
Set LibPrivFlag=1 to include private library objects

To copy a variable group, seeCopyVar on page 27.
To delete a variable group, seeDelVar on page 40.

This example assumes a properly stored and
refreshed library document named linalg2 that
contains objects defined as clearmat, gauss1, and
gauss2.

LinRegBx Catalog >

LinRegBx X,Y[,[Freq][,Category,Include]]

Computes the linear regression y = a+b•x on lists X and Y with
frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those

LinRegBx Catalog >

data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output
variable

Description

stat.RegEqn Regression Equation: a+b•x

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

LinRegMx Catalog >

LinRegMx X,Y[,[Freq][,Category,Include]]

Computes the linear regression y =m•x+b on lists X and Y with
frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Alphabetical Listing 69

70 Alphabetical Listing

Output
variable

Description

stat.RegEqn Regression Equation: y = m•x+b

stat.m, stat.b Regression coefficients

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

LinRegtIntervals Catalog >

LinRegtIntervals X,Y[,F[,0[,CLev]]]

For Slope. Computes a level C confidence interval for the slope.

LinRegtIntervals X,Y[,F[,1,Xval[,CLev]]]

For Response. Computes a predicted y-value, a level C
prediction interval for a single observation, and a level C
confidence interval for themean response.

A summary of results is stored in the stat.results variable. (See
page 131.)

All the lists must have equal dimension.

X and Y are lists of independent and dependent variables.

F is an optional list of frequency values. Each element inF
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.RegEqn Regression Equation: a+b•x

stat.a, stat.b Regression coefficients

Output variable Description

stat.df Degrees of freedom

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

For Slope type only

Output variable Description

[stat.CLower, stat.CUpper] Confidence interval for the slope

stat.ME Confidence interval margin of error

stat.SESlope Standard error of slope

stat.s Standard error about the line

For Response type only

Output variable Description

[stat.CLower, stat.CUpper] Confidence interval for themean response

stat.ME Confidence interval margin of error

stat.SE Standard error of mean response

[stat.LowerPred,
stat.UpperPred]

Prediction interval for a single observation

stat.MEPred Prediction interval margin of error

stat.SEPred Standard error for prediction

stat.y a + b•XVal

LinRegtTest Catalog >

LinRegtTest X,Y[,Freq[,Hypoth]]

Computes a linear regression on theX and Y lists and a t test on
the value of slope β and the correlation coefficient ρ for the
equation y=α+βx. It tests the null hypothesis H0:β=0
(equivalently, ρ=0) against one of three alternative hypotheses.

All the lists must have equal dimension.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq

Alphabetical Listing 71

72 Alphabetical Listing

LinRegtTest Catalog >

specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Hypoth is an optional value specifying one of three alternative
hypotheses against which the null hypothesis (H0:β=ρ=0) will be
tested.

For Ha: β≠0 and ρ≠0 (default), set Hypoth=0
For Ha: β<0 and ρ<0, set Hypoth<0
For Ha: β>0 and ρ>0, set Hypoth>0

A summary of results is stored in the stat.results variable. (See
page 131.)

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.RegEqn Regression equation: a + b•x

stat.t t-Statistic for significance test

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom

stat.a, stat.b Regression coefficients

stat.s Standard error about the line

stat.SESlope Standard error of slope

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

linSolve() Catalog >

linSolve(SystemOfLinearEqns, Var1, Var2, ...)⇒
list

linSolve(LinearEqn1 and LinearEqn2 and ..., Var1,
Var2, ...)⇒ list

linSolve({LinearEqn1, LinearEqn2, ...}, Var1, Var2,
...)⇒ list

linSolve(SystemOfLinearEqns, {Var1, Var2, ...})⇒
list

linSolve(LinearEqn1 and LinearEqn2 and ...,
{Var1, Var2, ...})⇒ list

linSolve({LinearEqn1, LinearEgn2, ...}, {Var1, Var2,
...}) ⇒ list

Returns a list of solutions for the variables Var1,
Var2, ...

The first argument must evaluate to a system of
linear equations or a single linear equation. Otherwise,
an argument error occurs.

For example, evaluating linSolve(x=1 and

x=2,x) produces an “Argument Error” result.

ΔList() Catalog >

ΔList(List1)⇒ list

Note: You can insert this function from the keyboard
by typing deltaList(...).

Returns a list containing the differences between
consecutive elements in List1. Each element of List1
is subtracted from the next element of List1. The
resulting list is always one element shorter than the
original List1.

Alphabetical Listing 73

74 Alphabetical Listing

list►mat() Catalog >

list►mat(List [, elementsPerRow])⇒ matrix

Returns amatrix filled row-by-row with the elements
from List.

elementsPerRow, if included, specifies the number of
elements per row. Default is the number of elements
in List (one row).

If List does not fill the resultingmatrix, zeros are
added.

Note: You can insert this function from the computer
keyboard by typing list@>mat(...).

ln() /u keys

ln(Value1)⇒ value
ln(List1)⇒ list

Returns the natural logarithm of the argument.

For a list, returns the natural logarithms of the
elements.

If complex format mode is Real:

If complex format mode is Rectangular:

ln(squareMatrix1)⇒ squareMatrix

Returns thematrix natural logarithm of
squareMatrix1. This is not the same as calculating
the natural logarithm of each element. For information
about the calculationmethod, refer to cos() on.

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

In Radian anglemode and Rectangular complex
format:

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

LnReg Catalog >

LnRegX, Y[, [Freq] [, Category, Include]]

Computes the logarithmic regression y = a+b•ln(x) on lists X and
Y with frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output
variable

Description

stat.RegEqn Regression equation: a+b•ln(x)

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformed data

stat.r Correlation coefficient for transformed data (ln(x), y)

stat.Resid Residuals associated with the logarithmic model

stat.ResidTrans Residuals associated with linear fit of transformed data

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

Alphabetical Listing 75

76 Alphabetical Listing

Local Catalog >

Local Var1[, Var2] [, Var3] ...

Declares the specified vars as local variables. Those
variables exist only during evaluation of a function and
are deleted when the function finishes execution.

Note: Local variables savememory because they
only exist temporarily. Also, they do not disturb any
existing global variable values. Local variables must
be used for For loops and for temporarily saving
values in amulti-line function sincemodifications on
global variables are not allowed in a function.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Lock Catalog >

LockVar1[, Var2] [, Var3] ...
LockVar.

Locks the specified variables or variable group.
Locked variables cannot bemodified or deleted.

You cannot lock or unlock the system variableAns,
and you cannot lock the system variable groups stat.
or tvm.

Note: The Lock command clears the Undo/Redo
history when applied to unlocked variables.

See unLock, page 147, and getLockInfo(), page 57.

log() /s keys

log(Value1[,Value2])⇒ value

log(List1[,Value2])⇒ list

Returns the base-Value2 logarithm of the first
argument.

Note: See also Log template, page 6.

log() /s keys

For a list, returns the base-Value2 logarithm of the
elements.

If the second argument is omitted, 10 is used as the
base.

If complex format mode is Real:

If complex format mode is Rectangular:

log(squareMatrix1[,Value])⇒ squareMatrix

Returns thematrix base-Value logarithm of
squareMatrix1. This is not the same as calculating
the base-Value logarithm of each element. For
information about the calculationmethod, refer to cos
().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

If the base argument is omitted, 10 is used as base.

In Radian anglemode and Rectangular complex
format:

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

Logistic Catalog >

Logistic X, Y[, [Freq] [, Category, Include]]

Computes the logistic regression y = (c/(1+a•e-bx)) on lists X and
Y with frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

Alphabetical Listing 77

78 Alphabetical Listing

Logistic Catalog >

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output
variable

Description

stat.RegEqn Regression equation: c/(1+a•e-bx)

stat.a, stat.b,
stat.c

Regression coefficients

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

LogisticD Catalog >

LogisticD X, Y [, [Iterations] , [Freq] [, Category, Include]]

Computes the logistic regression y = (c/(1+a•e-bx)+d) on lists X
and Y with frequency Freq, using a specified number of
Iterations. A summary of results is stored in the stat.results
variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output
variable

Description

stat.RegEqn Regression equation: c/(1+a•e-bx)+d)

stat.a, stat.b,
stat.c, stat.d

Regression coefficients

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

Loop Catalog >

Loop
 Block
EndLoop

Repeatedly executes the statements inBlock. Note
that the loop will be executed endlessly, unless a
Goto or Exit instruction is executed withinBlock.

Block is a sequence of statements separated with the
“:” character.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Alphabetical Listing 79

80 Alphabetical Listing

LU Catalog >

LUMatrix, lMatrix, uMatrix, pMatrix[,Tol]

Calculates the Doolittle LU (lower-upper)
decomposition of a real or complex matrix. The lower
triangular matrix is stored in lMatrix, the upper
triangular matrix in uMatrix, and the permutation
matrix (which describes the row swaps done during
the calculation) in pMatrix.

lMatrix•uMatrix = pMatrix•matrix

Optionally, any matrix element is treated as zero if its
absolute value is less than Tol. This tolerance is used
only if thematrix has floating-point entries and does
not contain any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

• If you use/·or set the Auto or
Approximatemode to Approximate,
computations are done using floating-point
arithmetic.

• If Tol is omitted or not used, the default
tolerance is calculated as:
5E⁻14•max(dim(Matrix))•rowNorm(Matrix)

The LU factorization algorithm uses partial pivoting
with row interchanges.

M

mat►list() Catalog >

mat►list(Matrix)⇒ list

Returns a list filled with the elements inMatrix. The
elements are copied fromMatrix row by row.

Note: You can insert this function from the computer
keyboard by typing mat@>list(...).

max() Catalog >

max(Value1, Value2)⇒ expression
max(List1, List2)⇒ list

max() Catalog >

max(Matrix1,Matrix2)⇒ matrix

Returns themaximum of the two arguments. If the
arguments are two lists or matrices, returns a list or
matrix containing themaximum value of each pair of
corresponding elements.

max(List)⇒ expression

Returns themaximum element in list.

max(Matrix1)⇒ matrix

Returns a row vector containing themaximum
element of each column inMatrix1.

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

Note: See alsomin().

mean() Catalog >

mean(List[, freqList])⇒ expression

Returns themean of the elements in List.

Each freqList element counts the number of
consecutive occurrences of the corresponding
element in List.

mean(Matrix1[, freqMatrix])⇒ matrix

Returns a row vector of themeans of all the columns
inMatrix1.

Each freqMatrix element counts the number of
consecutive occurrences of the corresponding
element inMatrix1.

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

In Rectangular vector format:

Alphabetical Listing 81

82 Alphabetical Listing

median() Catalog >

median(List[, freqList])⇒ expression

Returns themedian of the elements in List.

Each freqList element counts the number of
consecutive occurrences of the corresponding
element in List.

median(Matrix1[, freqMatrix])⇒ matrix

Returns a row vector containing themedians of the
columns inMatrix1.

Each freqMatrix element counts the number of
consecutive occurrences of the corresponding
element inMatrix1.

Notes:

• All entries in the list or matrix must simplify to
numbers.

• Empty (void) elements in the list or matrix are
ignored. For more information on empty
elements, see page 177.

MedMed Catalog >

MedMedX,Y [, Freq] [, Category, Include]]

Computes themedian-median line y = (m•x+b) on lists X and Y
with frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output
variable

Description

stat.RegEqn Median-median line equation: m•x+b

stat.m, stat.b Model coefficients

stat.Resid Residuals from themedian-median line

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

mid() Catalog >

mid(sourceString, Start[, Count])⇒ string

Returns Count characters from character string
sourceString, beginning with character number Start.

If Count is omitted or is greater than the dimension of
sourceString, returns all characters from
sourceString, beginning with character number Start.

Countmust be ≥ 0. If Count =0, returns an empty
string.

mid(sourceList, Start [, Count])⇒ list

Returns Count elements from sourceList, beginning
with element number Start.

If Count is omitted or is greater than the dimension of
sourceList, returns all elements from sourceList,
beginning with element number Start.

Countmust be ≥ 0. If Count = 0, returns an empty list.

mid(sourceStringList, Start[, Count])⇒ list

Returns Count strings from the list of strings
sourceStringList, beginning with element number
Start.

Alphabetical Listing 83

84 Alphabetical Listing

min() Catalog >

min(Value1, Value2)⇒ expression
min(List1, List2)⇒ list
min(Matrix1, Matrix2)⇒ matrix

Returns theminimum of the two arguments. If the
arguments are two lists or matrices, returns a list or
matrix containing theminimum value of each pair of
corresponding elements.

min(List)⇒ expression

Returns theminimum element of List.

min(Matrix1)⇒ matrix

Returns a row vector containing theminimum
element of each column inMatrix1.

Note: See alsomax().

mirr() Catalog >

mirr(financeRate,reinvestRate,CF0,CFList
[,CFFreq])

Financial function that returns themodified internal
rate of return of an investment.

financeRate is the interest rate that you pay on the
cash flow amounts.

reinvestRate is the interest rate at which the cash
flows are reinvested.

CF0 is the initial cash flow at time 0; it must be a real
number.

CFList is a list of cash flow amounts after the initial
cash flow CF0.

CFFreq is an optional list in which each element
specifies the frequency of occurrence for a grouped
(consecutive) cash flow amount, which is the
corresponding element of CFList. The default is 1; if
you enter values, they must be positive integers <
10,000.

Note: See also irr(), page 66.

mod() Catalog >

mod(Value1, Value2)⇒ expression
mod(List1, List2)⇒ list
mod(Matrix1,Matrix2)⇒ matrix

Returns the first argument modulo the second
argument as defined by the identities:

mod(x,0) = x
mod(x,y) = x − y floor(x/y)

When the second argument is non-zero, the result is
periodic in that argument. The result is either zero or
has the same sign as the second argument.

If the arguments are two lists or twomatrices, returns
a list or matrix containing themodulo of each pair of
corresponding elements.

Note: See also remain(), page 111

mRow() Catalog >

mRow(Value,Matrix1, Index)⇒ matrix

Returns a copy ofMatrix1with each element in row
Index ofMatrix1multiplied by Value.

mRowAdd() Catalog >

mRowAdd(Value,Matrix1, Index1, Index2)⇒
matrix

Returns a copy ofMatrix1with each element in row
Index2 ofMatrix1 replaced with:

Value • row Index1 + row Index2

MultReg Catalog >

MultReg Y, X1[,X2[,X3,…[,X10]]]

Calculates multiple linear regression of list Y on lists X1, X2, …,
X10. A summary of results is stored in the stat.results variable.
(See page 131.)

Alphabetical Listing 85

86 Alphabetical Listing

MultReg Catalog >

All the lists must have equal dimension.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.RegEqn Regression Equation: b0+b1•x1+b2•x2+ ...

stat.b0, stat.b1, ... Regression coefficients

stat.R2 Coefficient of multiple determination

stat.yList yList = b0+b1•x1+ ...

stat.Resid Residuals from the regression

MultRegIntervals Catalog >

MultRegIntervals Y, X1[, X2[, X3,…[, X10]]], XValList[, CLevel]

Computes a predicted y-value, a level C prediction interval for a
single observation, and a level C confidence interval for themean
response.

A summary of results is stored in the stat.results variable. (See
page 131.)

All the lists must have equal dimension.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.RegEqn Regression Equation: b0+b1•x1+b2•x2+ ...

stat.y A point estimate: y = b0 + b1 • xl + ... for XValList

stat.dfError Error degrees of freedom

stat.CLower, stat.CUpper Confidence interval for amean response

stat.ME Confidence interval margin of error

stat.SE Standard error of mean response

stat.LowerPred,
stat.UpperrPred

Prediction interval for a single observation

stat.MEPred Prediction interval margin of error

Output variable Description

stat.SEPred Standard error for prediction

stat.bList List of regression coefficients, {b0,b1,b2,...}

stat.Resid Residuals from the regression

MultRegTests Catalog >

MultRegTests Y, X1[, X2[, X3,…[, X10]]]

Multiple linear regression test computes amultiple linear
regression on the given data and provides the global F test
statistic and t test statistics for the coefficients.

A summary of results is stored in the stat.results variable. (See
page 131.)

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Outputs

Output variable Description

stat.RegEqn Regression Equation: b0+b1•x1+b2•x2+ ...

stat.F Global F test statistic

stat.PVal P-value associated with global F statistic

stat.R2 Coefficient of multiple determination

stat.AdjR2 Adjusted coefficient of multiple determination

stat.s Standard deviation of the error

stat.DW Durbin-Watson statistic; used to determine whether first-order auto correlation is present in the
model

stat.dfReg Regression degrees of freedom

stat.SSReg Regression sum of squares

stat.MSReg Regressionmean square

stat.dfError Error degrees of freedom

stat.SSError Error sum of squares

stat.MSError Error mean square

stat.bList {b0,b1,...} List of coefficients

Alphabetical Listing 87

88 Alphabetical Listing

Output variable Description

stat.tList List of t statistics, one for each coefficient in the bList

stat.PList List P-values for each t statistic

stat.SEList List of standard errors for coefficients in bList

stat.yList yList = b0+b1•x1+ . . .

stat.Resid Residuals from the regression

stat.sResid Standardized residuals; obtained by dividing a residual by its standard deviation

stat.CookDist Cook’s distance; measure of the influence of an observation based on the residual and leverage

stat.Leverage Measure of how far the values of the independent variable are from their mean values

N

nand /= keys

BooleanExpr1 nand BooleanExpr2 returns Boolean
expression
BooleanList1 nand BooleanList2 returns Boolean
list
BooleanMatrix1 nand BooleanMatrix2 returns
Boolean matrix

Returns the negation of a logical and operation on the
two arguments. Returns true, false, or a simplified
form of the equation.

For lists andmatrices, returns comparisons element
by element.

Integer1 nand Integer2⇒ integer

Compares two real integers bit-by-bit using a nand
operation. Internally, both integers are converted to
signed, 64-bit binary numbers. When corresponding
bits are compared, the result is 1 if both bits are 1;
otherwise, the result is 0. The returned value
represents the bit results, and is displayed according
to the Basemode.

You can enter the integers in any number base. For a
binary or hexadecimal entry, youmust use the 0b or
0h prefix, respectively. Without a prefix, integers are
treated as decimal (base 10).

nCr() Catalog >

nCr(Value1, Value2)⇒ expression

For integer Value1 andValue2withValue1 ≥ Value2≥
0, nCr() is the number of combinations of Value1
things takenValue2 at a time. (This is also known as
a binomial coefficient.)

nCr(Value, 0)⇒ 1

nCr(Value, negInteger)⇒ 0

nCr(Value, posInteger)⇒ Value•(Value−1) ...
(Value−posInteger+1)/ posInteger!

nCr(Value, nonInteger)⇒ expression! /
((Value−nonInteger)!•nonInteger!)

nCr(List1, List2)⇒ list

Returns a list of combinations based on the
corresponding element pairs in the two lists. The
arguments must be the same size list.

nCr(Matrix1,Matrix2)⇒ matrix

Returns amatrix of combinations based on the
corresponding element pairs in the twomatrices. The
arguments must be the same sizematrix.

nDerivative() Catalog >

nDerivative(Expr1,Var=Value[,Order])⇒ value

nDerivative(Expr1,Var[,Order]) |Var=Value⇒ value

Returns the numerical derivative calculated using
auto differentiationmethods.

WhenValue is specified, it overrides any prior
variable assignment or any current “|” substitution for
the variable.

If the variableVar does not contain a numeric value,
youmust provideValue.

Order of the derivativemust be 1 or 2.

Alphabetical Listing 89

90 Alphabetical Listing

nDerivative() Catalog >

Note: The nDerivative() algorithm has a limitiation: it
works recursively through the unsimplified
expression, computing the numeric value of the first
derivative (and second, if applicable) and the
evaluation of each subexpression, whichmay lead to
an unexpected result.

Consider the example on the right. The first derivative
of x•(x^2+x)^(1/3) at x=0 is equal to 0. However,
because the first derivative of the subexpression
(x^2+x)^(1/3) is undefined at x=0, and this value is
used to calculate the derivative of the total
expression, nDerivative() reports the result as
undefined and displays a warningmessage.

If you encounter this limitation, verify the solution
graphically. You can also try using centralDiff().

newList() Catalog >

newList(numElements)⇒ list

Returns a list with a dimension of numElements. Each
element is zero.

newMat() Catalog >

newMat(numRows, numColumns)⇒ matrix

Returns amatrix of zeros with the dimension
numRows by numColumns.

nfMax() Catalog >

nfMax(Expr, Var)⇒ value
nfMax(Expr, Var, lowBound)⇒ value
nfMax(Expr, Var, lowBound, upBound)⇒ value
nfMax(Expr, Var) | lowBound≤Var≤upBound⇒
value

Returns a candidate numerical value of variableVar
where the local maximum of Expr occurs.

If you supply lowBound and upBound, the function
looks in the closed interval [lowBound,upBound] for
the local maximum.

nfMin() Catalog >

nfMin(Expr, Var)⇒ value
nfMin(Expr, Var, lowBound)⇒ value
nfMin(Expr, Var, lowBound, upBound)⇒ value
nfMin(Expr, Var) | lowBound≤Var≤upBound⇒ value

Returns a candidate numerical value of variableVar
where the local minimum of Expr occurs.

If you supply lowBound and upBound, the function
looks in the closed interval [lowBound,upBound] for
the local minimum.

nInt() Catalog >

nInt(Expr1, Var, Lower, Upper)⇒ expression

If the integrandExpr1 contains no variable other than
Var, and if Lower andUpper are constants, positive
∞, or negative∞, then nInt() returns an approximation
of ∫(Expr1, Var, Lower, Upper). This approximation
is a weighted average of some sample values of the
integrand in the interval Lower<Var<Upper.

The goal is six significant digits. The adaptive
algorithm terminates when it seems likely that the
goal has been achieved, or when it seems unlikely
that additional samples will yield a worthwhile
improvement.

A warning is displayed (“Questionable accuracy”)
when it seems that the goal has not been achieved.

Nest nInt() to domultiple numeric integration.
Integration limits can depend on integration variables
outside them.

nom() Catalog >

nom(effectiveRate,CpY)⇒ value

Financial function that converts the annual effective
interest rate effectiveRate to a nominal rate, given
CpY as the number of compounding periods per year.

effectiveRate must be a real number, andCpYmust
be a real number > 0.

Note: See also eff(), page 44.

Alphabetical Listing 91

92 Alphabetical Listing

nor /= keys

BooleanExpr1 nor BooleanExpr2 returns Boolean
expression
BooleanList1 nor BooleanList2 returns Boolean list
BooleanMatrix1 nor BooleanMatrix2 returns
Boolean matrix

Returns the negation of a logical or operation on the
two arguments. Returns true, false, or a simplified
form of the equation.

For lists andmatrices, returns comparisons element
by element.

Integer1 nor Integer2⇒ integer

Compares two real integers bit-by-bit using a nor
operation. Internally, both integers are converted to
signed, 64-bit binary numbers. When corresponding
bits are compared, the result is 1 if both bits are 1;
otherwise, the result is 0. The returned value
represents the bit results, and is displayed according
to the Basemode.

You can enter the integers in any number base. For a
binary or hexadecimal entry, youmust use the 0b or
0h prefix, respectively. Without a prefix, integers are
treated as decimal (base 10).

norm() Catalog >

norm(Matrix)⇒ expression

norm(Vector)⇒ expression

Returns the Frobenius norm.

normCdf() Catalog >

normCdf(lowBound,upBound[,μ[,σ]])⇒ number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

Computes the normal distribution probability between lowBound
and upBound for the specified μ (default=0) and σ (default=1).

For P(X ≤ upBound), set lowBound = ⁻9E999.

normPdf() Catalog >

normPdf(XVal[,μ[,σ]])⇒ number if XVal is a number, list if XVal
is a list

Computes the probability density function for the normal
distribution at a specifiedXVal value for the specified μ and σ.

not Catalog >

not BooleanExpr⇒ Boolean expression

Returns true, false, or a simplified form of the
argument.

not Integer1⇒ integer

Returns the one’s complement of a real integer.
Internally, Integer1 is converted to a signed, 64-bit
binary number. The value of each bit is flipped (0
becomes 1, and vice versa) for the one’s
complement. Results are displayed according to the
Basemode.

You can enter the integer in any number base. For a
binary or hexadecimal entry, youmust use the 0b or
0h prefix, respectively. Without a prefix, the integer is
treated as decimal (base 10).

If you enter a decimal integer that is too large for a
signed, 64-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range. For more information, see
►Base2, page 20.

In Hex basemode:

Important: Zero, not the letter O.

In Bin basemode:

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

Note: A binary entry can have up to 64 digits (not
counting the 0b prefix). A hexadecimal entry can have
up to 16 digits.

nPr() Catalog >

nPr(Value1, Value2)⇒ expression

For integer Value1 andValue2withValue1 ≥ Value2 ≥
0, nPr() is the number of permutations of Value1
things takenValue2 at a time.

nPr(Value, 0)⇒ 1

nPr(Value, negInteger)⇒ 1 / ((Value+1)•(Value+2)...
(Value−negInteger))

Alphabetical Listing 93

94 Alphabetical Listing

nPr() Catalog >

nPr(Value, posInteger)⇒ Value•(Value−1) ...
(Value−posInteger+1)

nPr(Value, nonInteger)⇒ Value! /
(Value−nonInteger)!

nPr(List1, List2)⇒ list

Returns a list of permutations based on the
corresponding element pairs in the two lists. The
arguments must be the same size list.

nPr(Matrix1,Matrix2)⇒ matrix

Returns amatrix of permutations based on the
corresponding element pairs in the twomatrices. The
arguments must be the same sizematrix.

npv() Catalog >

npv(InterestRate,CFO,CFList[,CFFreq])

Financial function that calculates net present value;
the sum of the present values for the cash inflows and
outflows. A positive result for npv indicates a
profitable investment.

InterestRate is the rate by which to discount the cash
flows (the cost of money) over one period.

CF0 is the initial cash flow at time 0; it must be a real
number.

CFList is a list of cash flow amounts after the initial
cash flow CF0.

CFFreq is a list in which each element specifies the
frequency of occurrence for a grouped (consecutive)
cash flow amount, which is the corresponding
element of CFList. The default is 1; if you enter
values, they must be positive integers < 10,000.

nSolve() Catalog >

nSolve(Equation,Var[=Guess])⇒ number or error_
string

nSolve(Equation,Var[=Guess],lowBound)⇒ number
or error_string

nSolve(Equation,Var[=Guess],lowBound,upBound)
⇒ number or error_string

nSolve(Equation,Var[=Guess]) |
lowBound≤Var≤upBound⇒ number or error_string

Iteratively searches for one approximate real numeric
solution toEquation for its one variable. Specify the
variable as:

variable
– or –
variable = real number

For example, x is valid and so is x=3.

Note: If there aremultiple solutions, you can use a
guess to help find a particular solution.

nSolve() attempts to determine either one point where
the residual is zero or two relatively close points
where the residual has opposite signs and the
magnitude of the residual is not excessive. If it cannot
achieve this using amodest number of sample points,
it returns the string “no solution found.”

O

OneVar Catalog >

OneVar [1,]X[,[Freq][,Category,Include]]

OneVar [n,]X1,X2[X3[,…[,X20]]]

Calculates 1-variable statistics on up to 20 lists. A summary of
results is stored in the stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Alphabetical Listing 95

96 Alphabetical Listing

OneVar Catalog >

Category is a list of numeric category codes for the
correspondingX values.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

An empty (void) element in any of the lists X, Freq, orCategory
results in a void for the corresponding element of all those lists.
An empty element in any of the lists X1 throughX20 results in a
void for the corresponding element of all those lists. For more
information on empty elements, see page 177.

Output variable Description

stat.v Mean of x values

stat.Σx Sum of x values

stat.Σx2 Sum of x2 values

stat.sx Sample standard deviation of x

stat.σx Population standard deviation of x

stat.n Number of data points

stat.MinX Minimum of x values

stat.Q1X 1st Quartile of x

stat.MedianX Median of x

stat.Q3X 3rd Quartile of x

stat.MaxX Maximum of x values

stat.SSX Sum of squares of deviations from themean of x

or Catalog >

BooleanExpr1 or BooleanExpr2 returns Boolean
expression
BooleanList1 or BooleanList2 returns Boolean list
BooleanMatrix1 or BooleanMatrix2 returns Boolean
matrix

Returns true or false or a simplified form of the original
entry.

or Catalog >

Returns true if either or both expressions simplify to
true. Returns false only if both expressions evaluate
to false.

Note: See xor.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Integer1 or Integer2⇒ integer

Compares two real integers bit-by-bit using an or
operation. Internally, both integers are converted to
signed, 64-bit binary numbers. When corresponding
bits are compared, the result is 1 if either bit is 1; the
result is 0 only if both bits are 0. The returned value
represents the bit results, and is displayed according
to the Basemode.

You can enter the integers in any number base. For a
binary or hexadecimal entry, youmust use the 0b or
0h prefix, respectively. Without a prefix, integers are
treated as decimal (base 10).

If you enter a decimal integer that is too large for a
signed, 64-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range. For more information, see
►Base2, page 20.

Note: See xor.

In Hex basemode:

Important: Zero, not the letter O.

In Bin basemode:

Note: A binary entry can have up to 64 digits (not
counting the 0b prefix). A hexadecimal entry can have
up to 16 digits.

ord() Catalog >

ord(String)⇒ integer
ord(List1)⇒ list

Returns the numeric code of the first character in
character string String, or a list of the first characters
of each list element.

Alphabetical Listing 97

98 Alphabetical Listing

P

P►Rx() Catalog >

P►Rx(rExpr, θExpr)⇒ expression
P►Rx(rList, θList)⇒ list
P►Rx(rMatrix, θMatrix)⇒ matrix

Returns the equivalent x-coordinate of the (r, θ) pair.

Note: The θargument is interpreted as either a
degree, gradian or radian angle, according to the
current anglemode. If the argument is an expression,
you can use °, G, or r to override the anglemode
setting temporarily.

Note: You can insert this function from the computer
keyboard by typing P@>Rx(...).

In Radian anglemode:

P►Ry() Catalog >

P►Ry(rValue, θValue)⇒ value
P►Ry(rList, θList)⇒ list
P►Ry(rMatrix, θMatrix)⇒ matrix

Returns the equivalent y-coordinate of the (r, θ) pair.

Note: The θargument is interpreted as either a
degree, radian or gradian angle, according to the
current anglemode.°r

Note: You can insert this function from the computer
keyboard by typing P@>Ry(...).

In Radian anglemode:

PassErr Catalog >

PassErr

Passes an error to the next level.

If system variable errCode is zero, PassErr does not do
anything.

The Else clause of the Try...Else...EndTry block should use
ClrErr or PassErr. If the error is to be processed or ignored, use
ClrErr. If what to do with the error is not known, use PassErr to
send it to the next error handler. If there are nomore pending

For an example of PassErr, See
Example 2 under the Try command,
page 141.

PassErr Catalog >

Try...Else...EndTry error handlers, the error dialog box will be
displayed as normal.

Note: See alsoClrErr, page 25, and Try, page 141.

Note for entering the example: In the Calculator application on
the handheld, you can enter multi-line definitions by pressing@
instead of· at the end of each line. On the computer

keyboard, hold down Alt and press Enter.

piecewise() Catalog >

piecewise(Expr1[, Cond1[, Expr2 [, Cond2[, …]]]])

Returns definitions for a piecewise function in the
form of a list. You can also create piecewise
definitions by using a template.

Note: See also Piecewise template, page 6.

poissCdf() Catalog >

poissCdf(λ,lowBound,upBound)⇒ number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

poissCdf(λ,upBound)for P(0≤X≤upBound)⇒ number if upBound
is a number, list if upBound is a list

Computes a cumulative probability for the discrete Poisson
distribution with specifiedmean λ.

For P(X ≤ upBound), set lowBound=0

poissPdf() Catalog >

poissPdf(λ,XVal)⇒ number if XVal is a number, list if XVal is a
list

Computes a probability for the discrete Poisson distribution with
the specifiedmean λ.

►Polar Catalog >

Vector►Polar

Alphabetical Listing 99

100 Alphabetical Listing

►Polar Catalog >

Note: You can insert this operator from the computer
keyboard by typing @>Polar.

Displays vector in polar form [r∠θ]. The vector must
be of dimension 2 and can be a row or a column.

Note:►Polar is a display-format instruction, not a
conversion function. You can use it only at the end of
an entry line, and it does not update ans.

Note: See also►Rect, page 110.

complexValue►Polar

Displays complexVector in polar form.

• Degree anglemode returns (r∠θ).

• Radian anglemode returns reiθ.

complexValue can have any complex form. However,
an reiθ entry causes an error in Degree anglemode.

Note: Youmust use the parentheses for an (r∠θ)
polar entry.

In Radian anglemode:

In Gradian anglemode:

In Degree anglemode:

polyEval() Catalog >

polyEval(List1, Expr1)⇒ expression
polyEval(List1, List2)⇒ expression

Interprets the first argument as the coefficient of a
descending-degree polynomial, and returns the
polynomial evaluated for the value of the second
argument.

polyRoots() Catalog >

polyRoots(Poly,Var)⇒ list

polyRoots(ListOfCoeffs)⇒ list

The first syntax, polyRoots(Poly,Var), returns a list
of real roots of polynomial Poly with respect to
variableVar. If no real roots exist, returns an empty
list: { }.

Poly must be a polynomial in expanded form in one
variable. Do not use unexpanded forms such as
y2•y+1 or x•x+2•x+1

The second syntax, polyRoots(ListOfCoeffs), returns
a list of real roots for the coefficients in ListOfCoeffs.

Note: See also cPolyRoots(), page 33.

PowerReg Catalog >

PowerRegX,Y[, Freq][, Category, Include]]

Computes the power regressiony = (a•(x)b)on lists X and Y with
frequency Freq. A summary of results is stored in the
stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output
variable

Description

stat.RegEqn Regression equation: a•(x)b

Alphabetical Listing 101

102 Alphabetical Listing

Output
variable

Description

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformed data

stat.r Correlation coefficient for transformed data (ln(x), ln(y))

stat.Resid Residuals associated with the power model

stat.ResidTrans Residuals associated with linear fit of transformed data

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

Prgm Catalog >

Prgm
 Block
EndPrgm

Template for creating a user-defined program. Must
be used with theDefine, Define LibPub, orDefine
LibPriv command.

Block can be a single statement, a series of
statements separated with the “:” character, or a
series of statements on separate lines.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Calculate GCD and display intermediate results.

prodSeq() SeeΠ (), page 167.

Product (PI) SeeΠ (), page 167.

product() Catalog >

product(List[, Start[, End]])⇒ expression

Returns the product of the elements contained in List.
Start andEnd are optional. They specify a range of
elements.

product(Matrix1[, Start[, End]])⇒ matrix

Returns a row vector containing the products of the
elements in the columns ofMatrix1. Start and end
are optional. They specify a range of rows.

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

propFrac() Catalog >

propFrac(Value1[, Var])⇒ value

propFrac(rational_number) returns rational_number
as the sum of an integer and a fraction having the
same sign and a greater denominator magnitude than
numerator magnitude.

propFrac(rational_expression,Var) returns the sum
of proper ratios and a polynomial with respect toVar.
The degree of Var in the denominator exceeds the
degree of Var in the numerator in each proper ratio.
Similar powers of Var are collected. The terms and
their factors are sorted withVar as themain variable.

If Var is omitted, a proper fraction expansion is done
with respect to themost main variable. The
coefficients of the polynomial part are thenmade
proper with respect to their most main variable first
and so on.

You can use the propFrac() function to represent
mixed fractions and demonstrate addition and
subtraction of mixed fractions.

Alphabetical Listing 103

104 Alphabetical Listing

Q

QR Catalog >

QRMatrix, qMatrix, rMatrix[, Tol]

Calculates the Householder QR factorization of a real
or complex matrix. The resulting Q and R matrices
are stored to the specifiedMatrix. TheQmatrix is
unitary. The R matrix is upper triangular.

Optionally, any matrix element is treated as zero if its
absolute value is less than Tol. This tolerance is used
only if thematrix has floating-point entries and does
not contain any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

• If you use/· or set the Auto or
Approximatemode to Approximate,
computations are done using floating-point
arithmetic.

• If Tol is omitted or not used, the default
tolerance is calculated as:
5E−14 •max(dim(Matrix)) •rowNorm(Matrix)

The floating-point number (9.) in m1 causes results to
be calculated in floating-point form.

TheQR factorization is computed numerically using
Householder transformations. The symbolic solution
is computed using Gram-Schmidt. The columns in
qMatName are the orthonormal basis vectors that
span the space defined by matrix.

QuadReg Catalog >

QuadRegX,Y[, Freq][, Category, Include]]

Computes the quadratic polynomial regression y=a•x2+b•x+c
on lists X and Y with frequency Freq. A summary of results is
stored in the stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the

QuadReg Catalog >

correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output
variable

Description

stat.RegEqn Regression equation: a•x2+b•x+c

stat.a, stat.b,
stat.c

Regression coefficients

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

QuartReg Catalog >

QuartRegX,Y[, Freq][, Category, Include]]

Computes the quartic polynomial regression
y = a•x4+b•x3+c• x2+d•x+e on lists X and Y with frequency Freq.
A summary of results is stored in the stat.results variable. (See
page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those

Alphabetical Listing 105

106 Alphabetical Listing

QuartReg Catalog >

data items whose category code is included in this list are
included in the calculation.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.RegEqn Regression equation: a•x4+b•x3+c• x2+d•x+e

stat.a, stat.b, stat.c,
stat.d, stat.e

Regression coefficients

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of
Freq, Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of
Freq, Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

R

R►Pθ() Catalog >

R►Pθ (xValue, yValue)⇒ value
R►Pθ (xList, yList)⇒ list
R►Pθ (xMatrix, yMatrix)⇒ matrix

Returns the equivalent θ-coordinate of the
(x,y) pair arguments.

Note: The result is returned as a degree, gradian or
radian angle, according to the current anglemode
setting.

Note: You can insert this function from the computer
keyboard by typing R@>Ptheta(...).

In Degree anglemode:

In Gradian anglemode:

In Radian anglemode:

R►Pr() Catalog >

R►Pr (xValue, yValue)⇒ value
R►Pr (xList, yList)⇒ list
R►Pr (xMatrix, yMatrix)⇒ matrix

Returns the equivalent r-coordinate of the (x,y) pair
arguments.

Note: You can insert this function from the computer
keyboard by typing R@>Pr(...).

In Radian anglemode:

►Rad Catalog >

Value1►Rad⇒ value

Converts the argument to radian anglemeasure.

Note: You can insert this operator from the computer
keyboard by typing @>Rad.

In Degree anglemode:

In Gradian anglemode:

rand() Catalog >

rand()⇒ expression
rand(#Trials)⇒ list

rand() returns a random value between 0 and 1.

rand(#Trials) returns a list containing #Trials random
values between 0 and 1.

Set the random-number seed.

randBin() Catalog >

randBin(n, p)⇒ expression
randBin(n, p, #Trials)⇒ list

randBin(n, p) returns a random real number from a
specified Binomial distribution.

randBin(n, p, #Trials) returns a list containing #Trials
random real numbers from a specified Binomial
distribution.

Alphabetical Listing 107

108 Alphabetical Listing

randInt() Catalog >

randInt
(lowBound,upBound)⇒
expression
randInt
(lowBound,upBound
,#Trials)⇒ list

randInt

(lowBound,upBound)
returns a random integer
within the range specified
by lowBound and
upBound integer bounds.

randInt

(lowBound,upBound
,#Trials) returns a list
containing #Trials
random integers within
the specified range.

randMat() Catalog >

randMat(numRows, numColumns)⇒ matrix

Returns amatrix of integers between -9 and 9 of the
specified dimension.

Both arguments must simplify to integers.
Note: The values in this matrix will change each time
you press·.

randNorm() Catalog >

randNorm(μ, σ)⇒ expression
randNorm(μ, σ, #Trials)⇒ list

randNorm(μ, σ) returns a decimal number from the
specified normal distribution. It could be any real
number but will be heavily concentrated in the interval
[μ−3•σ, μ+3•σ].

randNorm(μ, σ, #Trials) returns a list containing
#Trials decimal numbers from the specified normal
distribution.

randPoly() Catalog >

randPoly(Var, Order)⇒ expression

Returns a polynomial inVar of the specifiedOrder.
The coefficients are random integers in the range −9
through 9. The leading coefficient will not be zero.

Ordermust be 0–99.

randSamp() Catalog >

randSamp(List,#Trials[,noRepl])⇒ list

Returns a list containing a random sample of #Trials
trials from List with an option for sample replacement
(noRepl=0), or no sample replacement (noRepl=1).
The default is with sample replacement.

RandSeed Catalog >

RandSeedNumber

If Number =0, sets the seeds to the factory defaults
for the random-number generator. If Number ≠ 0, it is
used to generate two seeds, which are stored in
system variables seed1 and seed2.

real() Catalog >

real(Value1)⇒ value

Returns the real part of the argument.

real(List1)⇒ list

Returns the real parts of all elements.

real(Matrix1)⇒ matrix

Returns the real parts of all elements.

Alphabetical Listing 109

110 Alphabetical Listing

►Rect Catalog >

Vector►Rect

Note: You can insert this operator from the computer
keyboard by typing @>Rect.

Displays Vector in rectangular form [x, y, z]. The
vector must be of dimension 2 or 3 and can be a row
or a column.

Note:►Rect is a display-format instruction, not a
conversion function. You can use it only at the end of
an entry line, and it does not update ans.

Note: See also►Polar, page 99.

complexValue►Rect

Displays complexValue in rectangular form a+bi. The
complexValue can have any complex form. However,
an reiθ entry causes an error in Degree anglemode.

Note: Youmust use parentheses for an (r∠θ) polar
entry.

In Radian anglemode:

In Gradian anglemode:

In Degree anglemode:

Note: To type∠ , select it from the symbol list in the
Catalog.

ref() Catalog >

ref(Matrix1[, Tol])⇒ matrix

Returns the row echelon form ofMatrix1.

Optionally, any matrix element is treated as zero if its
absolute value is less than Tol. This tolerance is used
only if thematrix has floating-point entries and does
not contain any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

• If you use/· or set the Auto or

ref() Catalog >

Approximatemode to Approximate,
computations are done using floating-point
arithmetic.

• If Tol is omitted or not used, the default
tolerance is calculated as:
5E−14 •max(dim(Matrix1)) •rowNorm(Matrix1)

Avoid undefined elements inMatrix1. They can lead
to unexpected results.

For example, if a is undefined in the following
expression, a warningmessage appears and the
result is shown as:

The warning appears because the generalized
element 1/awould not be valid for a=0.

You can avoid this by storing a value to a beforehand
or by using the constraint (“|”) operator to substitute a
value, as shown in the following example.

Note: See also rref(), page 118.

remain() Catalog >

remain(Value1, Value2)⇒ value
remain(List1, List2)⇒ list
remain(Matrix1,Matrix2)⇒ matrix

Returns the remainder of the first argument with
respect to the second argument as defined by the
identities:

remain(x,0) x
remain(x,y) x−y•iPart(x/y)

Alphabetical Listing 111

112 Alphabetical Listing

remain() Catalog >

As a consequence, note that remain(−x,y) − remain

(x,y). The result is either zero or it has the same sign
as the first argument.

Note: See alsomod(), page 85.

Request Catalog >

Request promptString, var[, DispFlag [, statusVar]]

Request promptString, func(arg1, ...argn)
[, DispFlag [, statusVar]]

Programming command: Pauses the program and
displays a dialog box containing themessage
promptString and an input box for the user’s
response.

When the user types a response and clicks OK, the
contents of the input box are assigned to variable var.

If the user clicks Cancel, the program proceeds
without accepting any input. The program uses the
previous value of var if varwas already defined.

The optionalDispFlag argument can be any
expression.

• If DispFlag is omitted or evaluates to 1, the
prompt message and user’s response are
displayed in the Calculator history.

• If DispFlag evaluates to 0, the prompt and
response are not displayed in the history.

Define a program:

Define request_demo()=Prgm
 Request “Radius: ”,r
 Disp “Area = “,pi*r2

EndPrgm

Run the program and type a response:

request_demo()

Result after selectingOK:

Radius: 6/2
Area= 28.2743

The optional statusVar argument gives the program a
way to determine how the user dismissed the dialog
box. Note that statusVar requires theDispFlag
argument.

• If the user clickedOK or pressed Enter or
Ctrl+Enter, variable statusVar is set to a value
of 1.

• Otherwise, variable statusVar is set to a value
of 0.

The func() argument allows a program to store the
user’s response as a function definition. This syntax
operates as if the user executed the command:

Define a program:

Define polynomial()=Prgm
 Request "Enter a polynomial in x:",p(x)
 Disp "Real roots are:",polyRoots(p(x),x)
EndPrgm

Run the program and type a response:

polynomial()

Request Catalog >

 Define func(arg1, ...argn) = user’s response

The program can then use the defined function func().
The promptString should guide the user to enter an
appropriate user’s response that completes the
function definition.

Note: You can use the Request command within a
user-defined program but not within a function.

To stop a program that contains aRequest command
inside an infinite loop:

• Windows®: Hold down the F12 key and press
Enter repeatedly.

• Macintosh®: Hold down the F5 key and press
Enter repeatedly.

• Handheld: Hold down thec key and press
· repeatedly.

Note: See alsoRequestStr, page 113.

Result after entering x^3+3x+1 and selectingOK:

Real roots are: {-0.322185}

RequestStr Catalog >

RequestStr promptString, var[, DispFlag]

Programming command: Operates identically to the
first syntax of theRequest command, except that the
user’s response is always interpreted as a string. By
contrast, theRequest command interprets the
response as an expression unless the user encloses
it in quotationmarks (““).

Note: You can use theRequestStr command within a
user-defined program but not within a function.

To stop a program that contains aRequestStr
command inside an infinite loop:

• Windows®: Hold down the F12 key and press
Enter repeatedly.

• Macintosh®: Hold down the F5 key and press
Enter repeatedly.

• Handheld: Hold down thec key and press
· repeatedly.

Note: See alsoRequest, page 112.

Define a program:

Define requestStr_demo()=Prgm
 RequestStr “Your name:”,name,0
 Disp “Response has “,dim(name),” characters.”
EndPrgm

Run the program and type a response:

requestStr_demo()

Result after selectingOK (Note that theDispFlag
argument of 0 omits the prompt and response from
the history):

Alphabetical Listing 113

114 Alphabetical Listing

RequestStr Catalog >

requestStr_demo()

Response has 5 characters.

Return Catalog >

Return [Expr]

Returns Expr as the result of the function. Use within
a Func...EndFunc block.

Note: UseReturn without an argument within a
Prgm...EndPrgm block to exit a program.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

right() Catalog >

right(List1[, Num])⇒ list

Returns the rightmost Num elements contained in
List1.

If you omit Num, returns all of List1.

right(sourceString[, Num])⇒ string

Returns the rightmost Num characters contained in
character string sourceString.

If you omit Num, returns all of sourceString.

right(Comparison)⇒ expression

Returns the right side of an equation or inequality.

rk23 () Catalog >

rk23(Expr, Var, depVar, {Var0, VarMax}, depVar0,
VarStep [, diftol])⇒ matrix

rk23(SystemOfExpr, Var, ListOfDepVars, {Var0,
VarMax}, ListOfDepVars0, VarStep[, diftol])⇒

Differential equation:

y'=0.001*y*(100-y) and y(0)=10

rk23 () Catalog >

matrix

rk23(ListOfExpr, Var, ListOfDepVars, {Var0,
VarMax}, ListOfDepVars0, VarStep[, diftol])⇒
matrix

Uses the Runge-Kutta method to solve the system

with depVar(Var0)=depVar0 on the interval
[Var0,VarMax]. Returns amatrix whose first row
defines theVar output values as defined by VarStep.
The second row defines the value of the first solution
component at the correspondingVar values, and so
on.

Expr is the right hand side that defines the ordinary
differential equation (ODE).

SystemOfExpr is a system of right-hand sides that
define the system of ODEs (corresponds to order of
dependent variables in ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the
system of ODEs (corresponds to order of dependent
variables in ListOfDepVars).

Var is the independent variable.

ListOfDepVars is a list of dependent variables.

{Var0, VarMax} is a two-element list that tells the
function to integrate from Var0 toVarMax.

ListOfDepVars0 is a list of initial values for dependent
variables.

If VarStep evaluates to a nonzero number: sign
(VarStep) = sign(VarMax-Var0) and solutions are
returned at Var0+i*VarStep for all i=0,1,2,… such that
Var0+i*VarStep is in [var0,VarMax] (may not get a
solution value at VarMax).

if VarStep evaluates to zero, solutions are returned at
the "Runge-Kutta"Var values.

diftol is the error tolerance (defaults to 0.001).

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

Same equation with diftol set to 1.E−6

System of equations:

with y1(0)=2 and y2(0)=5

Alphabetical Listing 115

116 Alphabetical Listing

root() Catalog >

root(Value)⇒ root
root(Value1, Value2)⇒ root

root(Value) returns the square root of Value.

root(Value1, Value2) returns theValue2 root of
Value1. Value1 can be a real or complex floating point
constant or an integer or complex rational constant.

Note: See alsoNth root template, page 6.

rotate() Catalog >

rotate(Integer1[,#ofRotations])⇒ integer

Rotates the bits in a binary integer. You can enter
Integer1 in any number base; it is converted
automatically to a signed, 64-bit binary form. If the
magnitude of Integer1 is too large for this form, a
symmetric modulo operation brings it within the
range. For more information, see►Base2, page 20.

In Bin basemode:

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

If #ofRotations is positive, the rotation is to the left. If
#ofRotations is negative, the rotation is to the right.
The default is −1 (rotate right one bit).

For example, in a right rotation:

In Hex basemode:

Each bit rotates right.

0b00000000000001111010110000110101

Rightmost bit rotates to leftmost.

produces:

0b10000000000000111101011000011010

The result is displayed according to the Basemode.

Important: To enter a binary or hexadecimal
number, always use the 0b or 0h prefix (zero, not the
letter O).

rotate(List1[,#ofRotations])⇒ list

Returns a copy of List1 rotated right or left by #of
Rotations elements. Does not alter List1.

If #ofRotations is positive, the rotation is to the left. If
#of Rotations is negative, the rotation is to the right.
The default is −1 (rotate right one element).

In Dec basemode:

rotate() Catalog >

rotate(String1[,#ofRotations])⇒ string

Returns a copy of String1 rotated right or left by
#ofRotations characters. Does not alter String1.

If #ofRotations is positive, the rotation is to the left. If
#ofRotations is negative, the rotation is to the right.
The default is −1 (rotate right one character).

round() Catalog >

round(Value1[, digits])⇒ value

Returns the argument rounded to the specified
number of digits after the decimal point.

digitsmust be an integer in the range 0–12. If digits is
not included, returns the argument rounded to 12
significant digits.

Note: Display digits modemay affect how this is
displayed.

round(List1[, digits])⇒ list

Returns a list of the elements rounded to the specified
number of digits.

round(Matrix1[, digits])⇒ matrix

Returns amatrix of the elements rounded to the
specified number of digits.

rowAdd() Catalog >

rowAdd(Matrix1, rIndex1, rIndex2)⇒ matrix

Returns a copy ofMatrix1with row rIndex2 replaced
by the sum of rows rIndex1 and rIndex2.

rowDim() Catalog >

rowDim(Matrix)⇒ expression

Returns the number of rows inMatrix.

Note: See also colDim(), page 26.

Alphabetical Listing 117

118 Alphabetical Listing

rowNorm() Catalog >

rowNorm(Matrix)⇒ expression

Returns themaximum of the sums of the absolute
values of the elements in the rows inMatrix.

Note: All matrix elements must simplify to numbers.
See also colNorm(), page 26.

rowSwap() Catalog >

rowSwap(Matrix1, rIndex1, rIndex2)⇒ matrix

ReturnsMatrix1with rows rIndex1 and rIndex2
exchanged.

rref() Catalog >

rref(Matrix1[, Tol])⇒ matrix

Returns the reduced row echelon form ofMatrix1.

Optionally, any matrix element is treated as zero if its
absolute value is less than Tol. This tolerance is used
only if thematrix has floating-point entries and does
not contain any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

• If you use/· or set the Auto or
Approximatemode to Approximate,
computations are done using floating-point
arithmetic.

• If Tol is omitted or not used, the default
tolerance is calculated as:
5E−14 •max(dim(Matrix1)) •rowNorm(Matrix1)

Note: See also ref(), page 110.

S

sec() µ key

sec(Value1)⇒ value
sec(List1)⇒ list

Returns the secant of Value1 or returns a list
containing the secants of all elements in List1.

Note: The argument is interpreted as a degree,
gradian or radian angle, according to the current angle
mode setting. You can use °, G, or r to override the
anglemode temporarily.

In Degree anglemode:

sec⁻¹() µ key

sec⁻¹(Value1)⇒ value
sec⁻¹(List1)⇒ list

Returns the angle whose secant is Value1 or returns
a list containing the inverse secants of each element
of List1.

Note: The result is returned as a degree, gradian, or
radian angle, according to the current anglemode
setting.

Note: You can insert this function from the keyboard
by typing arcsec(...).

In Degree anglemode:

In Gradian anglemode:

In Radian anglemode:

sech() Catalog >

sech(Value1)⇒ value
sech(List1)⇒ list

Returns the hyperbolic secant of Value1 or returns a
list containing the hyperbolic secants of the List1
elements.

Alphabetical Listing 119

120 Alphabetical Listing

sech⁻¹() Catalog >

sech⁻¹(Value1)⇒ value
sech⁻¹(List1)⇒ list

Returns the inverse hyperbolic secant of Value1 or
returns a list containing the inverse hyperbolic
secants of each element of List1.

Note: You can insert this function from the keyboard
by typing arcsech(...).

In Radian angle and Rectangular complex mode:

seq() Catalog >

seq(Expr, Var, Low, High[, Step])⇒ list

Increments Var from Low throughHigh by an
increment of Step, evaluates Expr, and returns the
results as a list. The original contents of Var are still
there after seq() is completed.

The default value for Step =1.
Press Ctrl+Enter/· (Macintosh®:“+Enter) to
evaluate:

seqGen() Catalog >

seqGen(Expr, Var, depVar, {Var0, VarMax}[,
ListOfInitTerms
[, VarStep[, CeilingValue]]])⇒ list

Generates a list of terms for sequence depVar(Var)
=Expr as follows: Increments independent variable
Var from Var0 throughVarMax by VarStep,
evaluates depVar(Var) for corresponding values of
Var using theExpr formula and ListOfInitTerms, and
returns the results as a list.

seqGen(ListOrSystemOfExpr, Var, ListOfDepVars,
{Var0, VarMax} [
,MatrixOfInitTerms[, VarStep[, CeilingValue]]])⇒
matrix

Generate the first 5 terms of the sequence u(n) = u(n-
1)2/2, with u(1)=2 andVarStep=1.

Example in which Var0=2:

seqGen() Catalog >

Generates amatrix of terms for a system (or list) of
sequences ListOfDepVars(Var)
=ListOrSystemOfExpr as follows: Increments
independent variableVar from Var0 throughVarMax
by VarStep, evaluates ListOfDepVars(Var) for
corresponding values of Var using
ListOrSystemOfExpr formula and
MatrixOfInitTerms, and returns the results as a
matrix.

The original contents of Var are unchanged after
seqGen() is completed.

The default value for VarStep = 1.

System of two sequences:

Note: The Void (_) in the initial term matrix above is
used to indicate that the initial term for u1(n) is
calculated using the explicit sequence formula u1(n)
=1/n.

seqn() Catalog >

seqn(Expr(u, n[, ListOfInitTerms[, nMax[,
CeilingValue]]])⇒ list

Generates a list of terms for a sequence u(n)=Expr(u,
n) as follows: Increments n from 1 through nMax by
1, evaluates u(n) for corresponding values of n using
theExpr(u, n) formula and ListOfInitTerms, and
returns the results as a list.

seqn(Expr(n[, nMax[, CeilingValue]])⇒ list

Generates a list of terms for a non-recursive
sequence u(n)=Expr(n) as follows: Increments n from
1 through nMax by 1, evaluates u(n) for
corresponding values of n using theExpr(n) formula,
and returns the results as a list.

If nMax is missing, nMax is set to 2500

If nMax=0, nMax is set to 2500

Note: seqn() calls seqGen() with n0=1 and nstep =1

Generate the first 6 terms of the sequence u(n) = u(n-
1)/2, with u(1)=2.

Alphabetical Listing 121

122 Alphabetical Listing

setMode() Catalog >

setMode(modeNameInteger, settingInteger)⇒
integer
setMode(list)⇒ integer list

Valid only within a function or program.

setMode(modeNameInteger, settingInteger)
temporarily sets modemodeNameInteger to the new
setting settingInteger, and returns an integer
corresponding to the original setting of that mode. The
change is limited to the duration of the
program/function’s execution.

modeNameInteger specifies whichmode you want to
set. It must be one of themode integers from the
table below.

settingInteger specifies the new setting for themode.
It must be one of the setting integers listed below for
the specific mode you are setting.

setMode(list) lets you changemultiple settings. list
contains pairs of mode integers and setting integers.
setMode(list) returns a similar list whose integer pairs
represent the original modes and settings.

If you have saved all mode settings with getMode(0)

→var, you can use setMode(var) to restore those
settings until the function or program exits. See
getMode(), page 58.

Note: The current mode settings are passed to called
subroutines. If any subroutine changes amode
setting, themode change will be lost when control
returns to the calling routine.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Display approximate value of π using the default
setting for Display Digits, and then display π with a
setting of Fix2. Check to see that the default is
restored after the program executes.

Mode
Name

Mode
Integer Setting Integers

Display
Digits

1 1=Float, 2=Float1, 3=Float2, 4=Float3, 5=Float4, 6=Float5, 7=Float6,
8=Float7, 9=Float8, 10=Float9, 11=Float10, 12=Float11, 13=Float12,

Mode
Name

Mode
Integer Setting Integers

14=Fix0, 15=Fix1, 16=Fix2, 17=Fix3, 18=Fix4, 19=Fix5, 20=Fix6, 21=Fix7,
22=Fix8, 23=Fix9, 24=Fix10, 25=Fix11, 26=Fix12

Angle 2 1=Radian, 2=Degree, 3=Gradian

Exponential
Format

3 1=Normal, 2=Scientific, 3=Engineering

Real or
Complex

4 1=Real, 2=Rectangular, 3=Polar

Auto or
Approx.

5 1=Auto, 2=Approximate

Vector
Format

6 1=Rectangular, 2=Cylindrical, 3=Spherical

Base 7 1=Decimal, 2=Hex, 3=Binary

shift() Catalog >

shift(Integer1[,#ofShifts])⇒ integer

Shifts the bits in a binary integer. You can enter
Integer1 in any number base; it is converted
automatically to a signed, 64-bit binary form. If the
magnitude of Integer1 is too large for this form, a
symmetric modulo operation brings it within the
range. For more information, see►Base2, page 20.

If #ofShifts is positive, the shift is to the left. If
#ofShifts is negative, the shift is to the right. The
default is −1 (shift right one bit).

In a right shift, the rightmost bit is dropped and 0 or 1
is inserted tomatch the leftmost bit. In a left shift, the
leftmost bit is dropped and 0 is inserted as the
rightmost bit.

For example, in a right shift:

Each bit shifts right.

0b0000000000000111101011000011010

Inserts 0 if leftmost bit is 0,
or 1 if leftmost bit is 1.

produces:

In Bin basemode:

In Hex basemode:

Important: To enter a binary or hexadecimal
number, always use the 0b or 0h prefix (zero, not the
letter O).

Alphabetical Listing 123

124 Alphabetical Listing

shift() Catalog >

0b00000000000000111101011000011010

The result is displayed according to the Basemode.
Leading zeros are not shown.

shift(List1[,#ofShifts])⇒ list

Returns a copy of List1 shifted right or left by
#ofShifts elements. Does not alter List1.

If #ofShifts is positive, the shift is to the left. If
#ofShifts is negative, the shift is to the right. The
default is −1 (shift right one element).

Elements introduced at the beginning or end of list by
the shift are set to the symbol “undef”.

In Dec basemode:

shift(String1[,#ofShifts])⇒ string

Returns a copy of String1 shifted right or left by
#ofShifts characters. Does not alter String1.

If #ofShifts is positive, the shift is to the left. If
#ofShifts is negative, the shift is to the right. The
default is −1 (shift right one character).

Characters introduced at the beginning or end of
string by the shift are set to a space.

sign() Catalog >

sign(Value1)⇒ value
sign(List1)⇒ list
sign(Matrix1)⇒ matrix

For real and complex Value1, returns Value1 / abs
(Value1) whenValue1 ≠ 0.

Returns 1 if Value1is positive.Returns −1 if Value1 is
negative. sign(0) returns „1 if the complex format
mode is Real; otherwise, it returns itself.

sign(0) represents the unit circle in the complex
domain.

For a list or matrix, returns the signs of all the
elements.

If complex format mode is Real:

simult() Catalog >

simult(coeffMatrix, constVector[, Tol])⇒ matrix

Returns a column vector that contains the solutions
to a system of linear equations.

Note: See also linSolve(), page 73.

coeffMatrix must be a squarematrix that contains
the coefficients of the equations.

constVectormust have the same number of rows
(same dimension) as coeffMatrix and contain the
constants.

Optionally, any matrix element is treated as zero if its
absolute value is less than Tol. This tolerance is used
only if thematrix has floating-point entries and does
not contain any symbolic variables that have not been
assigned a value. Otherwise, Tol is ignored.

• If you set the Auto or Approximatemode to
Approximate, computations are done using
floating-point arithmetic.

• If Tol is omitted or not used, the default
tolerance is calculated as:
5E−14 •max(dim(coeffMatrix)) •rowNorm
(coeffMatrix)

Solve for x and y:
x + 2y = 1
3x + 4y = −1

The solution is x=−3 and y=2.

Solve:
ax + by = 1
cx + dy = 2

simult(coeffMatrix, constMatrix[, Tol])⇒ matrix

Solves multiple systems of linear equations, where
each system has the same equation coefficients but
different constants.

Each column in constMatrix must contain the
constants for a system of equations. Each column in
the resultingmatrix contains the solution for the
corresponding system.

Solve:
 x + 2y = 1
3x + 4y = −1

 x + 2y = 2
3x + 4y = −3

For the first system, x=−3 and y=2. For the second
system, x=−7 and y=9/2.

sin() µ key

sin(Value1)⇒ value
sin(List1)⇒ list

sin(Value1) returns the sine of the argument.

In Degree anglemode:

Alphabetical Listing 125

126 Alphabetical Listing

sin() µ key

sin(List1) returns a list of the sines of all elements in
List1.

Note: The argument is interpreted as a degree,
gradian or radian angle, according to the current angle
mode. You can use °, g, or r to override the angle
mode setting temporarily.

In Gradian anglemode:

In Radian anglemode:

sin(squareMatrix1)⇒ squareMatrix

Returns thematrix sine of squareMatrix1. This is not
the same as calculating the sine of each element. For
information about the calculationmethod, refer to cos
().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

In Radian anglemode:

sin⁻¹() µ key

sin⁻¹(Value1)⇒ value
sin⁻¹(List1)⇒ list

sin⁻¹(Value1) returns the angle whose sine is Value1.

sin⁻¹(List1) returns a list of the inverse sines of each
element of List1.

Note: The result is returned as a degree, gradian or
radian angle, according to the current anglemode
setting.

Note: You can insert this function from the keyboard
by typing arcsin(...).

In Degree anglemode:

In Gradian anglemode:

In Radian anglemode:

sin⁻¹(squareMatrix1)⇒ squareMatrix In Radian anglemode and Rectangular complex
format mode:

sin⁻¹() µ key

Returns thematrix inverse sine of squareMatrix1.
This is not the same as calculating the inverse sine of
each element. For information about the calculation
method, refer to cos().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

sinh() Catalog >

sinh(Numver1)⇒ value
sinh(List1)⇒ list

sinh (Value1) returns the hyperbolic sine of the
argument.

sinh (List1) returns a list of the hyperbolic sines of
each element of List1.

sinh(squareMatrix1)⇒ squareMatrix

Returns thematrix hyperbolic sine of squareMatrix1.
This is not the same as calculating the hyperbolic sine
of each element. For information about the calculation
method, refer to cos().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

In Radian anglemode:

sinh⁻¹() Catalog >

sinh⁻¹(Value1)⇒ value
sinh⁻¹(List1)⇒ list

sinh⁻¹(Value1) returns the inverse hyperbolic sine of
the argument.

sinh⁻¹(List1) returns a list of the inverse hyperbolic
sines of each element of List1.

Note: You can insert this function from the keyboard
by typing arcsinh(...).

sinh⁻¹(squareMatrix1)⇒ squareMatrix In Radian anglemode:

Alphabetical Listing 127

128 Alphabetical Listing

sinh⁻¹() Catalog >

Returns thematrix inverse hyperbolic sine of
squareMatrix1. This is not the same as calculating
the inverse hyperbolic sine of each element. For
information about the calculationmethod, refer to cos
().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

SinReg Catalog >

SinRegX, Y[, [Iterations],[Period][, Category, Include]]

Computes the sinusoidal regression on lists X and Y. A summary
of results is stored in the stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Iterations is a value that specifies themaximum number of times
(1 through 16) a solution will be attempted. If omitted, 8 is used.
Typically, larger values result in better accuracy but longer
execution times, and vice versa.

Period specifies an estimated period. If omitted, the difference
between values inX should be equal and in sequential order. If
you specify Period, the differences between x values can be
unequal.

Category is a list of numeric or string category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

The output of SinReg is always in radians, regardless of the
anglemode setting.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output
variable

Description

stat.RegEqn Regression Equation: a•sin(bx+c)+d

Output
variable

Description

stat.a, stat.b,
stat.c, stat.d

Regression coefficients

stat.Resid Residuals from the regression

stat.XReg List of data points in themodifiedX List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in themodified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

SortA Catalog >

SortA List1[, List2] [, List3]...
SortAVector1[, Vector2] [, Vector3]...

Sorts the elements of the first argument in ascending
order.

If you include additional arguments, sorts the
elements of each so that their new positions match
the new positions of the elements in the first
argument.

All arguments must be names of lists or vectors. All
arguments must have equal dimensions.

Empty (void) elements within the first argument move
to the bottom. For more information on empty
elements, see page 177.

SortD Catalog >

SortD List1[, List2][, List3]...
SortD Vector1[,Vector2][,Vector3]...

Identical to SortA, except SortD sorts the elements in
descending order.

Empty (void) elements within the first argument move
to the bottom. For more information on empty
elements, see page 177.

Alphabetical Listing 129

130 Alphabetical Listing

►Sphere Catalog >

Vector►Sphere

Note: You can insert this operator from the computer
keyboard by typing @>Sphere.

Displays the row or column vector in spherical form
[ρ∠θ∠φ].

Vectormust be of dimension 3 and can be either a
row or a column vector.

Note:►Sphere is a display-format instruction, not a
conversion function. You can use it only at the end of
an entry line.

sqrt() Catalog >

sqrt(Value1)⇒ value
sqrt(List1)⇒ list

Returns the square root of the argument.

For a list, returns the square roots of all the elements
in List1.

Note: See also Square root template, page 5.

stat.results Catalog >

stat.results

Displays results from a statistics calculation.

The results are displayed as a set of name-value
pairs. The specific names shown are dependent on
themost recently evaluated statistics function or
command.

You can copy a name or value and paste it into other
locations.

Note: Avoid defining variables that use the same
names as those used for statistical analysis. In some
cases, an error condition could occur. Variable names
used for statistical analysis are listed in the table
below.

stat.a

stat.AdjR²

stat.b

stat.b0

stat.b1

stat.b2

stat.b3

stat.b4

stat.b5

stat.b6

stat.b7

stat.b8

stat.b9

stat.b10

stat.bList

stat.χ²

stat.c

stat.CLower

stat.CLowerList

stat.CompList

stat.CompMatrix

stat.dfDenom

stat.dfBlock

stat.dfCol

stat.dfError

stat.dfInteract

stat.dfReg

stat.dfNumer

stat.dfRow

stat.DW

stat.e

stat.ExpMatrix

stat.F

stat.FBlock

stat.Fcol

stat.FInteract

stat.FreqReg

stat.Frow

stat.Leverage

stat.LowerPred

stat.LowerVal

stat.m

stat.MedianY

stat.MEPred

stat.MinX

stat.MinY

stat.MS

stat.MSBlock

stat.MSCol

stat.MSError

stat.MSInteract

stat.MSReg

stat.MSRow

stat.n

Stat.Ç

stat.Ç1

stat.Ç2

stat.ÇDiff

stat.PList

stat.PVal

stat.PValBlock

stat.PValCol

stat.PValInteract

stat.Q3X

stat.Q3Y

stat.r

stat.r²

stat.RegEqn

stat.Resid

stat.ResidTrans

stat.σx

stat.σy

stat.σx1

stat.σx2

stat.Σx

stat.Σx²

stat.Σxy

stat.Σy

stat.Σy²

stat.s

stat.SE

stat.SEList

stat.SEPred

stat.sResid

stat.SSBlock

stat.SSCol

stat.SSX

stat.SSY

stat.SSError

stat.SSInteract

stat.SSReg

stat.SSRow

stat.tList

stat.UpperPred

stat.UpperVal

stat.v

stat.v1

stat.v2

stat.vDiff

stat.vList

stat.XReg

stat.XVal

stat.XValList

stat.w

stat.y

Alphabetical Listing 131

132 Alphabetical Listing

stat.CookDist

stat.CUpper

stat.CUpperList

stat.d

stat.MaxX

stat.MaxY

stat.ME

stat.MedianX

stat.PValRow

stat.Q1X

stat.Q1Y

stat.SEslope

stat.sp

stat.SS

stat.yList

stat.YReg

Note: Each time the Lists & Spreadsheet application calculates statistical results, it copies the “stat.”
group variables to a “stat#.” group, where # is a number that is incremented automatically. This lets
youmaintain previous results while performingmultiple calculations.

stat.values Catalog >

stat.values

Displays amatrix of the values calculated for themost recently
evaluated statistics function or command.

Unlike stat.results, stat.values omits the names associated with
the values.

You can copy a value and paste it into other locations.

See the stat.results example.

stDevPop() Catalog >

stDevPop(List [, freqList])⇒ expression

Returns the population standard deviation of the
elements in List.

Each freqList element counts the number of
consecutive occurrences of the corresponding
element in List.

Note:Listmust have at least two elements. Empty
(void) elements are ignored. For more information on
empty elements, see page 177.

In Radian angle and automodes:

stDevPop(Matrix1[, freqMatrix])⇒ matrix

Returns a row vector of the population standard
deviations of the columns inMatrix1.

Each freqMatrix element counts the number of
consecutive occurrences of the corresponding
element inMatrix1.

Note:Matrix1must have at least two rows. Empty
(void) elements are ignored. For more information on
empty elements, see page 177.

stDevSamp() Catalog >

stDevSamp(List[, freqList])⇒ expression

Returns the sample standard deviation of the
elements in List.

Each freqList element counts the number of
consecutive occurrences of the corresponding
element in List.

Note:Listmust have at least two elements. Empty
(void) elements are ignored. For more information on
empty elements, see page 177.

stDevSamp(Matrix1[, freqMatrix])⇒ matrix

Returns a row vector of the sample standard
deviations of the columns inMatrix1.

Each freqMatrix element counts the number of
consecutive occurrences of the corresponding
element inMatrix1.

Note:Matrix1must have at least two rows. Empty
(void) elements are ignored. For more information on
empty elements, see page 177.

Stop Catalog >

Stop

Programming command: Terminates the program.

Stop is not allowed in functions.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Store See→(store), page 175.

Alphabetical Listing 133

134 Alphabetical Listing

string() Catalog >

string(Expr)⇒ string

Simplifies Expr and returns the result as a character
string.

subMat() Catalog >

subMat(Matrix1[, startRow][, startCol][, endRow][,
endCol])⇒ matrix

Returns the specified submatrix ofMatrix1.

Defaults: startRow=1, startCol=1, endRow=last row,
endCol=last column.

Sum (Sigma) See Σ(), page 168.

sum() Catalog >

sum(List[, Start[, End]])⇒ expression

Returns the sum of all elements in List.

Start andEnd are optional. They specify a range of
elements.

Any void argument produces a void result. Empty
(void) elements in List are ignored. For more
information on empty elements, see page 177.

sum(Matrix1[, Start[, End]])⇒ matrix

Returns a row vector containing the sums of all
elements in the columns inMatrix1.

Start andEnd are optional. They specify a range of
rows.

Any void argument produces a void result. Empty
(void) elements inMatrix1 are ignored. For more
information on empty elements, see page 177.

sumIf() Catalog >

sumIf(List,Criteria[, SumList])⇒ value

Returns the accumulated sum of all elements in List
that meet the specifiedCriteria. Optionally, you can
specify an alternate list, sumList, to supply the
elements to accumulate.

List can be an expression, list, or matrix. SumList, if
specified, must have the same dimension(s) as List.

Criteria can be:

• A value, expression, or string. For example, 34
accumulates only those elements in List that
simplify to the value 34.

• A Boolean expression containing the symbol ?
as a placeholder for each element. For
example, ?<10 accumulates only those
elements in List that are less than 10.

When a List element meets theCriteria, the element
is added to the accumulating sum. If you include
sumList, the corresponding element from sumList is
added to the sum instead.

Within the Lists & Spreadsheet application, you can
use a range of cells in place of List and sumList.

Empty (void) elements are ignored. For more
information on empty elements, see page 177.

Note: See also countIf(), page 32.

sumSeq() See Σ(), page 168.

system() Catalog >

system(Value1[, Value2[, Value3[, ...]]])

Returns a system of equations, formatted as a list. You can also
create a system by using a template.

Alphabetical Listing 135

136 Alphabetical Listing

T

T (transpose) Catalog >

Matrix1T⇒ matrix

Returns the complex conjugate transpose of
Matrix1.

Note: You can insert this operator from the computer
keyboard by typing @t.

tan() µ key

tan(Value1)⇒ value
tan(List1)⇒ list

tan(Value1) returns the tangent of the argument.

tan(List1) returns a list of the tangents of all elements
in List1.

Note: The argument is interpreted as a degree,
gradian or radian angle, according to the current angle
mode. You can use °, g or r to override the anglemode
setting temporarily.

In Degree anglemode:

In Gradian anglemode:

In Radian anglemode:

tan(squareMatrix1)⇒ squareMatrix

Returns thematrix tangent of squareMatrix1. This is
not the same as calculating the tangent of each
element. For information about the calculation
method, refer to cos().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

In Radian anglemode:

tan⁻¹() µ key

tan⁻¹(Value1)⇒ value

tan⁻¹(List1)⇒ list

tan⁻¹(Value1) returns the angle whose tangent is
Value1.

tan⁻¹(List1) returns a list of the inverse tangents of
each element of List1.

Note: The result is returned as a degree, gradian or
radian angle, according to the current anglemode
setting.

Note: You can insert this function from the keyboard
by typing arctan(...).

In Degree anglemode:

In Gradian anglemode:

In Radian anglemode:

tan⁻¹(squareMatrix1)⇒ squareMatrix

Returns thematrix inverse tangent of squareMatrix1.
This is not the same as calculating the inverse
tangent of each element. For information about the
calculationmethod, refer to cos().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

In Radian anglemode:

tanh() Catalog >

tanh(Value1)⇒ value

tanh(List1)⇒ list

tanh(Value1) returns the hyperbolic tangent of the
argument.

tanh(List1) returns a list of the hyperbolic tangents of
each element of List1.

tanh(squareMatrix1)⇒ squareMatrix

Returns thematrix hyperbolic tangent of
squareMatrix1. This is not the same as calculating
the hyperbolic tangent of each element. For
information about the calculationmethod, refer to cos
().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

In Radian anglemode:

Alphabetical Listing 137

138 Alphabetical Listing

tanh⁻¹() Catalog >

tanh⁻¹(Value1)⇒ value
tanh⁻¹(List1)⇒ list

tanh⁻¹(Value1) returns the inverse hyperbolic tangent
of the argument.

tanh⁻¹(List1) returns a list of the inverse hyperbolic
tangents of each element of List1.

Note: You can insert this function from the keyboard
by typing arctanh(...).

In Rectangular complex format:

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

tanh⁻¹(squareMatrix1)⇒ squareMatrix

Returns thematrix inverse hyperbolic tangent of
squareMatrix1. This is not the same as calculating
the inverse hyperbolic tangent of each element. For
information about the calculationmethod, refer to cos
().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

In Radian anglemode and Rectangular complex
format:

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

tCdf() Catalog >

tCdf(lowBound,upBound,df)⇒ number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

Computes the Student-t distribution probability between
lowBound and upBound for the specified degrees of freedom df.

For P(X ≤ upBound), set lowBound = ⁻9E999.

Text Catalog >

TextpromptString[, DispFlag]

Programming command: Pauses the program and displays the
character string promptString in a dialog box.

When the user selects OK, program execution continues.

The optional flag argument can be any expression.

• If DispFlag is omitted or evaluates to 1, the text message

Define a program that pauses to display
each of five random numbers in a dialog
box.

Within the Prgm...EndPrgm template,
complete each line by pressing@
instead of·. On the computer
keyboard, hold down Alt and press
Enter.

Text Catalog >

is added to the Calculator history.

• If DispFlag evaluates to 0, the text message is not added
to the history.

If the program needs a typed response from the user, refer to
Request, page 112, orRequestStr, page 113.

Note: You can use this command within a user-defined program
but not within a function.

Define text_demo()=Prgm
 For i,1,5
 strinfo:=”Random number “ & string
(rand(i))
 Text strinfo
 EndFor
EndPrgm

Run the program:

text_demo()

Sample of one dialog box:

Then See If, page 61.

tInterval Catalog >

tInterval List[, Freq[, CLevel]]

(Data list input)

tInterval v, sx, n[, CLevel]

(Summary stats input)

Computes a t confidence interval. A summary of results is stored
in the stat.results variable. (See page 131.)

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.CLower, stat.CUpper Confidence interval for an unknown populationmean

stat.v Samplemean of the data sequence from the normal random distribution

Alphabetical Listing 139

140 Alphabetical Listing

Output variable Description

stat.ME Margin of error

stat.df Degrees of freedom

stat.σx Sample standard deviation

stat.n Length of the data sequence with samplemean

tInterval_2Samp Catalog >

tInterval_2Samp List1,List2[,Freq1[,Freq2[,CLevel[,Pooled]]]]

(Data list input)

tInterval_2Samp v1,sx1,n1,v2,sx2,n2[,CLevel[,Pooled]]

(Summary stats input)

Computes a two-sample t confidence interval. A summary of
results is stored in the stat.results variable. (See page 131.)

Pooled=1 pools variances; Pooled=0 does not pool variances.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.v1-v2 Samplemeans of the data sequences from the normal random distribution

stat.ME Margin of error

stat.df Degrees of freedom

stat.v1, stat.v2 Samplemeans of the data sequences from the normal random distribution

stat.σx1, stat.σx2 Sample standard deviations for List 1 and List 2

stat.n1, stat.n2 Number of samples in data sequences

stat.sp The pooled standard deviation. Calculated whenPooled = YES

tPdf() Catalog >

tPdf(XVal,df)⇒ number if XVal is a number, list if XVal is a list

Computes the probability density function (pdf) for the Student-t
distribution at a specified x value with specified degrees of
freedom df.

trace() Catalog >

trace(squareMatrix)⇒ value

Returns the trace (sum of all the elements on the
main diagonal) of squareMatrix.

Try Catalog >

Try
 block1
Else
 block2
EndTry

Executes block1 unless an error occurs. Program
execution transfers to block2 if an error occurs in
block1. System variable errCode contains the error
code to allow the program to perform error recovery.
For a list of error codes, see “Error codes and
messages,” page 191.

block1 and block2 can be either a single statement or
a series of statements separated with the “:”
character.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

To see the commands Try, ClrErr, and PassErr in
operation, enter the eigenvals() program shown at the
right. Run the program by executing each of the
following expressions.

Note: See alsoClrErr, page 25, and PassErr, page 98.

Define eigenvals(a,b)=Prgm
© Program eigenvals(A,B) displays eigenvalues of
A•B

Try
 Disp "A= ",a
 Disp "B= ",b
 Disp " "

 Disp "Eigenvalues of A•B are:",eigVl(a*b)

Else
 If errCode=230 Then
 Disp "Error: Product of A•Bmust be a square

Alphabetical Listing 141

142 Alphabetical Listing

Try Catalog >

matrix"
 ClrErr
 Else
 PassErr
 EndIf
EndTry

EndPrgm

tTest Catalog >

tTest μ0,List[,Freq[,Hypoth]]

(Data list input)

tTest μ0,v,sx,n,[Hypoth]

(Summary stats input)

Performs a hypothesis test for a single unknown population
mean μwhen the population standard deviation σ is unknown. A
summary of results is stored in the stat.results variable. (See
page 131.)

Test H0: μ = μ0, against one of the following:

For Ha: μ < μ0, set Hypoth<0
For Ha: μ ≠ μ0 (default), set Hypoth=0
For Ha: μ > μ0, set Hypoth>0

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.t (v − μ0) / (stdev / sqrt(n))

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom

stat.v Samplemean of the data sequence in List

stat.sx Sample standard deviation of the data sequence

stat.n Size of the sample

tTest_2Samp Catalog >

tTest_2Samp List1,List2[,Freq1[,Freq2[,Hypoth[,Pooled]]]]

(Data list input)

tTest_2Samp v1,sx1,n1,v2,sx2,n2[,Hypoth[,Pooled]]

(Summary stats input)

Computes a two-sample t test. A summary of results is stored in
the stat.results variable. (See page 131.)

Test H0: μ1 = μ2, against one of the following:

For Ha: μ1< μ2, set Hypoth<0
For Ha: μ1≠ μ2 (default), set Hypoth=0
For Ha: μ1> μ2, set Hypoth>0

Pooled=1 pools variances
Pooled=0 does not pool variances

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.t Standard normal value computed for the difference of means

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom for the t-statistic

stat.v1, stat.v2 Samplemeans of the data sequences in List 1 and List 2

stat.sx1, stat.sx2 Sample standard deviations of the data sequences in List 1 and List 2

stat.n1, stat.n2 Size of the samples

stat.sp The pooled standard deviation. Calculated whenPooled=1.

tvmFV() Catalog >

tvmFV(N,I,PV,Pmt,[PpY],[CpY],[PmtAt])⇒ value

Financial function that calculates the future value of
money.

Note: Arguments used in the TVM functions are
described in the table of TVM arguments, page 144.
See also amortTbl(), page 11.

Alphabetical Listing 143

144 Alphabetical Listing

tvmI() Catalog >

tvmI(N,PV,Pmt,FV,[PpY],[CpY],[PmtAt])⇒ value

Financial function that calculates the interest rate per
year.

Note: Arguments used in the TVM functions are
described in the table of TVM arguments, page 144.
See also amortTbl(), page 11.

tvmN() Catalog >

tvmN(I,PV,Pmt,FV,[PpY],[CpY],[PmtAt])⇒ value

Financial function that calculates the number of
payment periods.

Note: Arguments used in the TVM functions are
described in the table of TVM arguments, page 144.
See also amortTbl(), page 11.

tvmPmt() Catalog >

tvmPmt(N,I,PV,FV,[PpY],[CpY],[PmtAt])⇒ value

Financial function that calculates the amount of each
payment.

Note: Arguments used in the TVM functions are
described in the table of TVM arguments, page 144.
See also amortTbl(), page 11.

tvmPV() Catalog >

tvmPV(N,I,Pmt,FV,[PpY],[CpY],[PmtAt])⇒ value

Financial function that calculates the present value.

Note: Arguments used in the TVM functions are
described in the table of TVM arguments, page 144.
See also amortTbl(), page 11.

TVM argument* Description Data type

N Number of payment periods real number

I Annual interest rate real number

TVM argument* Description Data type

PV Present value real number

Pmt Payment amount real number

FV Future value real number

PpY Payments per year, default=1 integer > 0

CpY Compounding periods per year, default=1 integer > 0

PmtAt Payment due at the end or beginning of each period, default=end integer (0=end, 1=beginning)

*These time-value-of-money argument names are similar to the TVM variable names (such as tvm.pv

and tvm.pmt) that are used by theCalculator application’s finance solver. Financial functions, however,
do not store their argument values or results to the TVM variables.

TwoVar Catalog >

TwoVar X, Y[, [Freq][, Category, Include]]

Calculates the TwoVar statistics. A summary of results is stored
in the stat.results variable. (See page 131.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element inFreq
specifies the frequency of occurrence for each correspondingX
and Y data point. The default value is 1. All elements must be
integers ≥ 0.

Category is a list of numeric category codes for the
correspondingX and Y data.

Include is a list of one or more of the category codes. Only those
data items whose category code is included in this list are
included in the calculation.

An empty (void) element in any of the lists X, Freq, orCategory
results in a void for the corresponding element of all those lists.
An empty element in any of the lists X1 throughX20 results in a
void for the corresponding element of all those lists. For more
information on empty elements, see page 177.

Output variable Description

stat.v Mean of x values

stat.Σx Sum of x values

stat.Σx2 Sum of x2 values

Alphabetical Listing 145

146 Alphabetical Listing

Output variable Description

stat.sx Sample standard deviation of x

stat.σx Population standard deviation of x

stat.n Number of data points

stat.w Mean of y values

stat.Σy Sum of y values

stat.Σy2 Sum of y2 values

stat.sy Sample standard deviation of y

stat.σy Population standard deviation of y

stat.Σxy Sum of x•y values

stat.r Correlation coefficient

stat.MinX Minimum of x values

stat.Q1X 1st Quartile of x

stat.MedianX Median of x

stat.Q3X 3rd Quartile of x

stat.MaxX Maximum of x values

stat.MinY Minimum of y values

stat.Q1Y 1st Quartile of y

stat.MedY Median of y

stat.Q3Y 3rd Quartile of y

stat.MaxY Maximum of y values

stat.Σ(x-v)2 Sum of squares of deviations from themean of x

stat.Σ(y-w)2 Sum of squares of deviations from themean of y

U

unitV() Catalog >

unitV(Vector1)⇒ vector

Returns either a row- or column-unit vector,
depending on the form of Vector1.

Vector1must be either a single-row matrix or a single-
columnmatrix.

unLock Catalog >

unLock Var1[, Var2] [, Var3] ...
unLock Var.

Unlocks the specified variables or variable group.
Locked variables cannot bemodified or deleted.

See Lock, page 76, and getLockInfo(), page 57.

V

varPop() Catalog >

varPop(List[, freqList])⇒ expression

Returns the population variance of List.

Each freqList element counts the number of
consecutive occurrences of the corresponding
element in List.

Note: Listmust contain at least two elements.

If an element in either list is empty (void), that
element is ignored, and the corresponding element in
the other list is also ignored. For more information on
empty elements, see page 177.

varSamp() Catalog >

varSamp(List[, freqList])⇒ expression

Returns the sample variance of List.

Each freqList element counts the number of
consecutive occurrences of the corresponding
element in List.

Note: Listmust contain at least two elements.

If an element in either list is empty (void), that
element is ignored, and the corresponding element in
the other list is also ignored. For more information on

Alphabetical Listing 147

148 Alphabetical Listing

varSamp() Catalog >

empty elements, see page 177.

varSamp(Matrix1[, freqMatrix])⇒ matrix

Returns a row vector containing the sample variance
of each column inMatrix1.

Each freqMatrix element counts the number of
consecutive occurrences of the corresponding
element inMatrix1.

If an element in either matrix is empty (void), that
element is ignored, and the corresponding element in
the other matrix is also ignored. For more information
on empty elements, see page 177.

Note:Matrix1must contain at least two rows.

W

warnCodes () Catalog >

warnCodes(Expr1, StatusVar)⇒ expression

Evaluates expressionExpr1, returns the result, and
stores the codes of any generated warnings in the
StatusVar list variable. If no warnings are generated,
this function assigns StatusVar an empty list.

Expr1 can be any valid TI-Nspire™ or TI-Nspire™ CAS
math expression. You cannot use a command or
assignment as Expr1.

StatusVarmust be a valid variable name.

For a list of warning codes and associatedmessages,
see page 191.

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

when() Catalog >

when(Condition, trueResult [, falseResult][,
unknownResult])⇒ expression

Returns trueResult, falseResult, or unknownResult,
depending on whetherCondition is true, false, or
unknown. Returns the input if there are too few

when() Catalog >

arguments to specify the appropriate result.

Omit both falseResult and unknownResult to make an
expression defined only in the region whereCondition
is true.

Use an undef falseResult to define an expression that
graphs only on an interval.

when() is helpful for defining recursive functions.

While Catalog >

WhileCondition
 Block
EndWhile

Executes the statements inBlock as long as
Condition is true.

Block can be either a single statement or a sequence
of statements separated with the “:” character.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

X

xor Catalog >

BooleanExpr1 xor BooleanExpr2 returns Boolean
expressionBooleanList1
xor BooleanList2 returns Boolean
listBooleanMatrix1
xor BooleanMatrix2 returns Boolean matrix

Returns true if BooleanExpr1 is true and
BooleanExpr2 is false, or vice versa.

Alphabetical Listing 149

150 Alphabetical Listing

xor Catalog >

Returns false if both arguments are true or if both are
false. Returns a simplified Boolean expression if
either of the arguments cannot be resolved to true or
false.

Note: See or, page 96.

Integer1 xor Integer2⇒ integer

Compares two real integers bit-by-bit using an xor
operation. Internally, both integers are converted to
signed, 64-bit binary numbers. When corresponding
bits are compared, the result is 1 if either bit (but not
both) is 1; the result is 0 if both bits are 0 or both bits
are 1. The returned value represents the bit results,
and is displayed according to the Basemode.

You can enter the integers in any number base. For a
binary or hexadecimal entry, youmust use the 0b or
0h prefix, respectively. Without a prefix, integers are
treated as decimal (base 10).

If you enter a decimal integer that is too large for a
signed, 64-bit binary form, a symmetric modulo
operation is used to bring the value into the
appropriate range. For more information, see
►Base2, page 20.

Note: See or, page 96.

In Hex basemode:

Important: Zero, not the letter O.

In Bin basemode:

Note: A binary entry can have up to 64 digits (not
counting the 0b prefix). A hexadecimal entry can have
up to 16 digits.

Z

zInterval Catalog >

zInterval σ,List[,Freq[,CLevel]]

(Data list input)

zInterval σ,v,n [,CLevel]

(Summary stats input)

Computes a z confidence interval. A summary of results is
stored in the stat.results variable. (See page 131.)

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.CLower, stat.CUpper Confidence interval for an unknown populationmean

stat.x Samplemean of the data sequence from the normal random distribution

stat.ME Margin of error

stat.sx Sample standard deviation

stat.n Length of the data sequence with samplemean

stat.σ Known population standard deviation for data sequence List

zInterval_1Prop Catalog >

zInterval_1Prop x,n [,CLevel]

Computes a one-proportion z confidence interval. A summary of
results is stored in the stat.results variable. (See page 131.)

x is a non-negative integer.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.Ç The calculated proportion of successes

stat.ME Margin of error

stat.n Number of samples in data sequence

zInterval_2Prop Catalog >

zInterval_2Prop x1,n1,x2,n2[,CLevel]

Computes a two-proportion z confidence interval. A summary of
results is stored in the stat.results variable. (See page 131.)

x1 and x2 are non-negative integers.

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.Ç Diff The calculated difference between proportions

Alphabetical Listing 151

152 Alphabetical Listing

Output variable Description

stat.ME Margin of error

stat.Ç1 First sample proportion estimate

stat.>Ç2 Second sample proportion estimate

stat.n1 Sample size in data sequence one

stat.n2 Sample size in data sequence two

zInterval_2Samp Catalog >

zInterval_2Samp σ1,σ2 ,List1,List2[,Freq1[,Freq2,[CLevel]]]

(Data list input)

zInterval_2Samp σ1,σ2,v1,n1,v2,n2[,CLevel]

(Summary stats input)

Computes a two-sample z confidence interval. A summary of
results is stored in the stat.results variable. (See page 131.)

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.x1-x2 Samplemeans of the data sequences from the normal random distribution

stat.ME Margin of error

stat.x1, stat.x2 Samplemeans of the data sequences from the normal random distribution

stat.σx1, stat.σx2 Sample standard deviations for List 1 and List 2

stat.n1, stat.n2 Number of samples in data sequences

stat.r1, stat.r2 Known population standard deviations for data sequence List 1 and List 2

zTest Catalog >

zTest μ0,σ,List,[Freq[,Hypoth]]

(Data list input)

zTest μ0,σ,v,n[,Hypoth]

(Summary stats input)

Performs a z test with frequency freqlist. A summary of results

zTest Catalog >

is stored in the stat.results variable. (See page 131.)

Test H0: μ = μ0, against one of the following:

For Ha: μ < μ0, set Hypoth<0
For Ha: μ ≠ μ0 (default), set Hypoth=0
For Ha: μ > μ0, set Hypoth>0

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.z (x − μ0) / (σ / sqrt(n))

stat.P Value Least probability at which the null hypothesis can be rejected

stat.x Samplemean of the data sequence in List

stat.sx Sample standard deviation of the data sequence. Only returned for Data input.

stat.n Size of the sample

zTest_1Prop Catalog >

Output variable Description

stat.p0 Hypothesized population proportion

stat.z Standard normal value computed for the proportion

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.Ç Estimated sample proportion

stat.n Size of the sample

zTest_2Prop Catalog >

zTest_2Prop x1,n1,x2,n2[,Hypoth]

Computes a two-proportion z test. A summary of results is
stored in the stat.results variable. (See page 131.)

x1 and x2 are non-negative integers.

Test H0: p1 = p2, against one of the following:

Alphabetical Listing 153

154 Alphabetical Listing

zTest_2Prop Catalog >

For Ha: p1 > p2, set Hypoth>0
For Ha: p1 ≠ p2 (default), set Hypoth=0
For Ha: p < p0, set Hypoth<0

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.z Standard normal value computed for the difference of proportions

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.Ç1 First sample proportion estimate

stat.Ç2 Second sample proportion estimate

stat.Ç Pooled sample proportion estimate

stat.n1, stat.n2 Number of samples taken in trials 1 and 2

zTest_2Samp Catalog >

zTest_2Samp σ1,σ2 ,List1,List2[,Freq1[,Freq2[,Hypoth]]]

(Data list input)

zTest_2Samp σ1,σ2,v1,n1,v2,n2[,Hypoth]

(Summary stats input)

Computes a two-sample z test. A summary of results is stored in
the stat.results variable. (See page 131.)

Test H0: μ1 = μ2, against one of the following:

For Ha: μ1 < μ2, set Hypoth<0
For Ha: μ1 ≠ μ2 (default), set Hypoth=0
For Ha: μ1 > μ2, Hypoth>0

For information on the effect of empty elements in a list, see
“Empty (Void) Elements,” page 177.

Output variable Description

stat.z Standard normal value computed for the difference of means

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.x1, stat.x2 Samplemeans of the data sequences in List1 and List2

Output variable Description

stat.sx1, stat.sx2 Sample standard deviations of the data sequences in List1 and List2

stat.n1, stat.n2 Size of the samples

Alphabetical Listing 155

156 Symbols

Symbols

+ (add) + key

Value1 + Value2⇒ value

Returns the sum of the two arguments.

List1 + List2 ⇒ list

Matrix1 +Matrix2 ⇒ matrix

Returns a list (or matrix) containing the sums of
corresponding elements in List1 and List2 (or
Matrix1 andMatrix2).

Dimensions of the arguments must be equal.

Value + List1⇒ list

List1 + Value⇒ list

Returns a list containing the sums of Value and each
element in List1.

Value +Matrix1⇒ matrix

Matrix1 + Value⇒ matrix

Returns amatrix withValue added to each element
on the diagonal ofMatrix1.Matrix1must be square.

Note: Use .+ (dot plus) to add an expression to each
element.

− (subtract) - key

Value1−Value2⇒ value

Returns Value1minus Value2.

List1 −List2⇒ list

Matrix1 −Matrix2 ⇒ matrix

Subtracts each element in List2 (orMatrix2) from the
corresponding element in List1 (orMatrix1), and

− (subtract) - key

returns the results.

Dimensions of the arguments must be equal.

Value − List1⇒ list

List1 −Value⇒ list

Subtracts each List1 element from Value or subtracts
Value from each List1 element, and returns a list of
the results.

Value −Matrix1⇒ matrix

Matrix1 −Value⇒ matrix

Value −Matrix1 returns amatrix of Value times the
identity matrix minusMatrix1. Matrix1must be
square.

Matrix1 −Value returns amatrix of Value times the
identity matrix subtracted fromMatrix1. Matrix1
must be square.

Note: Use .− (dot minus) to subtract an expression
from each element.

•(multiply) r key

Value1•Value2⇒ value

Returns the product of the two arguments.

List1•List2⇒ list

Returns a list containing the products of the
corresponding elements in List1 and List2.

Dimensions of the lists must be equal.

Matrix1•Matrix2⇒ matrix

Returns thematrix product ofMatrix1 andMatrix2.

The number of columns inMatrix1must equal the
number of rows inMatrix2.

Value •List1⇒ list

List1•Value⇒ list

Returns a list containing the products of Value and

Symbols 157

158 Symbols

•(multiply) r key

each element in List1.

Value •Matrix1⇒ matrix

Matrix1•Value⇒ matrix

Returns amatrix containing the products of Value and
each element inMatrix1.

Note: Use .•(dot multiply) to multiply an expression by
each element.

⁄ (divide) p key

Value1 ⁄ Value2⇒ value

Returns the quotient of Value1 divided by Value2.

Note: See also Fraction template, page 5.

List1 ⁄ List2⇒ list

Returns a list containing the quotients of List1 divided
by List2.

Dimensions of the lists must be equal.

Value ⁄ List1⇒ list

List1 ⁄ Value⇒ list

Returns a list containing the quotients of Value
divided by List1 or List1 divided by Value.

Value ⁄Matrix1⇒ matrix

Matrix1 ⁄ Value⇒ matrix

Returns amatrix containing the quotients ofMatrix1 ⁄
Value.

Note: Use . ⁄ (dot divide) to divide an expression by
each element.

^ (power) l key

Value1 ^ Value2⇒ value

List1 ^ List2 ⇒ list

^ (power) l key

Returns the first argument raised to the power of the
second argument.

Note: See also Exponent template, page 5.

For a list, returns the elements in List1 raised to the
power of the corresponding elements in List2.

In the real domain, fractional powers that have
reduced exponents with odd denominators use the
real branch versus the principal branch for complex
mode.

Value ^ List1⇒ list

Returns Value raised to the power of the elements in
List1.

List1 ^ Value⇒ list

Returns the elements in List1 raised to the power of
Value.

squareMatrix1 ^ integer⇒ matrix

Returns squareMatrix1 raised to the integer power.

squareMatrix1must be a squarematrix.

If integer =−1, computes the inversematrix.
If integer <−1, computes the inversematrix to an
appropriate positive power.

x2 (square) q key

Value12⇒ value

Returns the square of the argument.

List12⇒ list

Returns a list containing the squares of the elements
in List1.

squareMatrix12⇒ matrix

Returns thematrix square of squareMatrix1. This is
not the same as calculating the square of each
element. Use .^2 to calculate the square of each
element.

Symbols 159

160 Symbols

.+ (dot add) ^+ keys

Matrix1 .+Matrix2⇒ matrix

Value .+Matrix1⇒ matrix

Matrix1.+Matrix2 returns amatrix that is the sum of
each pair of corresponding elements inMatrix1 and
Matrix2.

Value .+ Matrix1 returns amatrix that is the sum of
Value and each element inMatrix1.

.⁻(dot subt.) ^- keys

Matrix1 .−Matrix2⇒ matrix

Value .− Matrix1⇒ matrix

Matrix1.− Matrix2 returns amatrix that is the
difference between each pair of corresponding
elements inMatrix1 andMatrix2.

Value .− Matrix1 returns amatrix that is the
difference of Value and each element inMatrix1.

.•(dot mult.) ^r keys

Matrix1 .• Matrix2⇒ matrix

Value .• Matrix1⇒ matrix

Matrix1.• Matrix2 returns amatrix that is the product
of each pair of corresponding elements inMatrix1
andMatrix2.

Value .• Matrix1 returns amatrix containing the
products of Value and each element inMatrix1.

. ⁄ (dot divide) ^p keys

Matrix1. ⁄Matrix2⇒ matrix

Value . ⁄Matrix1⇒ matrix

Matrix1 . ⁄Matrix2 returns amatrix that is the
quotient of each pair of corresponding elements in
Matrix1 andMatrix2.

Value . ⁄Matrix1 returns amatrix that is the quotient
of Value and each element inMatrix1.

.^ (dot power) ^l keys

Matrix1 .^ Matrix2⇒ matrix

Value . ^ Matrix1⇒ matrix

Matrix1.^ Matrix2 returns amatrix where each
element inMatrix2 is the exponent for the
corresponding element inMatrix1.

Value .^ Matrix1 returns amatrix where each
element inMatrix1 is the exponent for Value.

− (negate) v key

−Value1 ⇒ value

−List1⇒ list

−Matrix1 ⇒ matrix

Returns the negation of the argument.

For a list or matrix, returns all the elements negated.

If the argument is a binary or hexadecimal integer, the
negation gives the two’s complement.

In Bin basemode:

Important: Zero, not the letter O.

To see the entire result, press£ and then use ¡ and ¢
to move the cursor.

%(percent) /k keys

Value1%⇒ value

List1%⇒ list

Matrix1%⇒ matrix

Returns

For a list or matrix, returns a list or matrix with each
element divided by 100.

Press Ctrl+Enter/· (Macintosh®: “+Enter)
to evaluate:

Press Ctrl+Enter/· (Macintosh®: “+Enter)
to evaluate:

= (equal) = key

Expr1=Expr2⇒ Boolean expression Example function that uses math test symbols: =, ≠,
<, ≤, >, ≥

Symbols 161

162 Symbols

= (equal) = key

List1=List2⇒ Boolean list

Matrix1=Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be equal to
Expr2.

Returns false if Expr1 is determined to not be equal to
Expr2.

Anything else returns a simplified form of the
equation.

For lists andmatrices, returns comparisons element
by element.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

Result of graphing g(x)

≠ (not equal) /= keys

Expr1≠Expr2⇒ Boolean expression

List1≠List2⇒ Boolean list

Matrix1≠Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be not equal toExpr2.

Returns false if Expr1 is determined to be equal toExpr2.

Anything else returns a simplified form of the equation.

For lists andmatrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing
/=

See “=” (equal) example.

< (less than) /= keys

Expr1<Expr2⇒ Boolean expression

List1<List2⇒ Boolean list

Matrix1<Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be less thanExpr2.

Returns false if Expr1 is determined to be greater than or equal to
Expr2.

Anything else returns a simplified form of the equation.

For lists andmatrices, returns comparisons element by element.

See “=” (equal) example.

≤ (less or equal) /= keys

Expr1≤Expr2⇒ Boolean expression

List1≤List2⇒ Boolean list

Matrix1 ≤Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be less than or equal to
Expr2.

Returns false if Expr1 is determined to be greater thanExpr2.

Anything else returns a simplified form of the equation.

For lists andmatrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing
<=

See “=” (equal) example.

> (greater than) /= keys

Expr1>Expr2⇒ Boolean expression

List1>List2⇒ Boolean list

Matrix1>Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be greater thanExpr2.

Returns false if Expr1 is determined to be less than or equal to
Expr2.

Anything else returns a simplified form of the equation.

For lists andmatrices, returns comparisons element by element.

See “=” (equal) example.

Symbols 163

164 Symbols

≥ (greater or equal) /= keys

Expr1≥Expr2⇒ Boolean expression

List1≥List2⇒ Boolean list

Matrix1 ≥Matrix2⇒ Boolean matrix

Returns true if Expr1 is determined to be greater than or equal to
Expr2.

Returns false if Expr1 is determined to be less thanExpr2.

Anything else returns a simplified form of the equation.

For lists andmatrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing
>=

See “=” (equal) example.

⇒ (logical implication) /= keys

BooleanExpr1⇒ BooleanExpr2 returns Boolean
expression

BooleanList1⇒ BooleanList2 returns Boolean list

BooleanMatrix1⇒ BooleanMatrix2 returns Boolean
matrix

Integer1⇒ Integer2 returns Integer

Evaluates the expression not <argument1> or
<argument2> and returns true, false, or a simplified
form of the equation.

For lists andmatrices, returns comparisons element
by element.

Note: You can insert this operator from the keyboard
by typing =>

⇔ (logical double implication, XNOR) /= keys

BooleanExpr1⇔ BooleanExpr2 returns Boolean
expression

BooleanList1⇔ BooleanList2 returns Boolean list

BooleanMatrix1⇔ BooleanMatrix2 returns Boolean
matrix

Integer1⇔ Integer2 returns Integer

Returns the negation of an XOR Boolean operation on
the two arguments. Returns true, false, or a simplified
form of the equation.

For lists andmatrices, returns comparisons element
by element.

Note: You can insert this operator from the keyboard
by typing <=>

! (factorial) º key

Value1!⇒ value

List1!⇒ list

Matrix1!⇒ matrix

Returns the factorial of the argument.

For a list or matrix, returns a list or matrix of factorials
of the elements.

& (append) /k keys

String1& String2⇒ string

Returns a text string that is String2 appended to
String1.

Symbols 165

166 Symbols

d() (derivative) Catalog >

d(Expr1, Var[, Order]) | Var=Value⇒ value

d(Expr1, Var[, Order])⇒ value

d(List1, Var[, Order])⇒ list

d(Matrix1, Var[, Order])⇒ matrix

Except when using the first syntax, youmust store a
numeric value in variableVar before evaluating d().
Refer to the examples.

d() can be used for calculating first and second order
derivative at a point numerically, using auto
differentiationmethods.

Order, if included, must be=1 or 2. The default is 1.

Note: You can insert this function from the keyboard
by typing derivative(...).

Note: See also First derivative, page 9 or
Second derivative, page 9.

Note: The d() algorithm has a limitation: it works
recursively through the unsimplified expression,
computing the numeric value of the first derivative
(and second, if applicable) and the evaluation of each
subexpression, whichmay lead to an unexpected
result.

Consider the example on the right. The first derivative
of x•(x^2+x)^(1/3) at x=0 is equal to 0. However,
because the first derivative of the subexpression
(x^2+x)^(1/3) is undefined at x=0, and this value is
used to calculate the derivative of the total
expression, d() reports the result as undefined and
displays a warningmessage.

If you encounter this limitation, verify the solution
graphically. You can also try using centralDiff().

∫() (integral) Catalog >

∫(Expr1, Var, Lower,Upper)⇒ value

Returns the integral of Expr1with respect to the
variableVar from Lower toUpper. Can be used to
calculate the definite integral numerically, using the

∫() (integral) Catalog >

samemethod as nInt().

Note: You can insert this function from the keyboard
by typing integral(...).

Note: See also nInt(), page 91, andDefiniteintegral
template, page 10.

√() (square root) /q keys

√(Value1)⇒ value

√(List1)⇒ list

Returns the square root of the argument.

For a list, returns the square roots of all the elements
in List1.

Note: You can insert this function from the keyboard
by typing sqrt(...)

Note: See also Square root template, page 5.

Π() (prodSeq) Catalog >

Π(Expr1, Var, Low, High)⇒ expression

Note: You can insert this function from the keyboard
by typing prodSeq(...).

Evaluates Expr1 for each value of Var from Low to
High, and returns the product of the results.

Note: See also Product template (Π), page 9.

Π(Expr1, Var, Low, Low−1)⇒ 1

Π(Expr1, Var, Low, High)⇒ 1/Π(Expr1, Var,
High+1, Low−1) if High <Low−1

The product formulas used are derived from the
following reference:

Ronald L. Graham, Donald E. Knuth, andOren
Patashnik. Concrete Mathematics: A Foundation

Symbols 167

168 Symbols

Π() (prodSeq) Catalog >

for Computer Science. Reading, Massachusetts:
Addison-Wesley, 1994.

Σ() (sumSeq) Catalog >

Σ(Expr1, Var, Low, High)⇒ expression

Note: You can insert this function from the keyboard
by typing sumSeq(...).

Evaluates Expr1 for each value of Var from Low to
High, and returns the sum of the results.

Note: See also Sum template, page 9.

Σ(Expr1, Var, Low, Low−1)⇒ 0

Σ(Expr1, Var, Low, High)⇒ μ

Σ(Expr1, Var, High+1, Low−1) if High <Low−1

The summation formulas used are derived from the
following reference:

Ronald L. Graham, Donald E. Knuth, andOren
Patashnik. Concrete Mathematics: A Foundation
for Computer Science. Reading, Massachusetts:
Addison-Wesley, 1994.

ΣInt() Catalog >

ΣInt(NPmt1, NPmt2, N, I, PV ,[Pmt], [FV], [PpY],
[CpY], [PmtAt], [roundValue])⇒ value

ΣInt(NPmt1,NPmt2,amortTable)⇒ value

Amortization function that calculates the sum of the
interest during a specified range of payments.

ΣInt() Catalog >

NPmt1 andNPmt2 define the start and end
boundaries of the payment range.

N, I, PV, Pmt, FV, PpY, CpY, andPmtAt are
described in the table of TVM arguments, page 144.

• If you omit Pmt, it defaults toPmt=tvmPmt
(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults toFV=0.
• The defaults for PpY, CpY, andPmtAt are the

same as for the TVM functions.

roundValue specifies the number of decimal places
for rounding. Default=2.

ΣInt(NPmt1,NPmt2,amortTable) calculates the sum
of the interest based on amortization table
amortTable. The amortTable argument must be a
matrix in the form described under amortTbl(), page
11.

Note: See also ΣPrn(), below, and Bal(), page 19.

ΣPrn() Catalog >

ΣPrn(NPmt1, NPmt2, N, I, PV, [Pmt], [FV], [PpY],
[CpY], [PmtAt], [roundValue])⇒ value

ΣPrn(NPmt1, NPmt2, amortTable)⇒ value

Amortization function that calculates the sum of the
principal during a specified range of payments.

NPmt1 andNPmt2 define the start and end
boundaries of the payment range.

N, I, PV, Pmt, FV, PpY, CpY, andPmtAt are
described in the table of TVM arguments, page 144.

• If you omit Pmt, it defaults toPmt=tvmPmt
(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults toFV=0.
• The defaults for PpY, CpY, andPmtAt are the

same as for the TVM functions.

roundValue specifies the number of decimal places
for rounding. Default=2.

Symbols 169

170 Symbols

ΣPrn() Catalog >

ΣPrn(NPmt1,NPmt2,amortTable) calculates the sum
of the principal paid based on amortization table
amortTable. The amortTable argument must be a
matrix in the form described under amortTbl(), page
11.

Note: See also ΣInt(), above, and Bal(), page 19.

(indirection) /k keys

varNameString

Refers to the variable whose name is varNameString.
This lets you use strings to create variable names
from within a function. Creates or refers to the variable xyz .

Returns the value of the variable (r) whose name is
stored in variable s1.

E (scientific notation) i key

mantissaEexponent

Enters a number in scientific notation. The number is
interpreted as mantissa × 10exponent.

Hint: If you want to enter a power of 10 without
causing a decimal value result, use 10^integer.

Note: You can insert this operator from the computer
keyboard by typing @E. for example, type 2.3@E4 to
enter 2.3E4.

g (gradian) ¹ key

Expr1g⇒ expression

List1g⇒ list

Matrix1g⇒ matrix

In Degree, Gradian or Radianmode:

g (gradian) ¹ key

This function gives you a way to specify a gradian
angle while in the Degree or Radianmode.

In Radian anglemode, multiplies Expr1 by π/200.

In Degree anglemode, multiplies Expr1 by g/100.

In Gradianmode, returns Expr1 unchanged.

Note: You can insert this symbol from the computer
keyboard by typing @g.

r(radian) ¹ key

Value1r ⇒value

List1r ⇒ list

Matrix1r ⇒ matrix

This function gives you a way to specify a radian
angle while in Degree or Gradianmode.

In Degree anglemode, multiplies the argument by
180/π.

In Radian anglemode, returns the argument
unchanged.

In Gradianmode, multiplies the argument by 200/π.

Hint: Use r if you want to force radians in a function
definition regardless of themode that prevails when
the function is used.

Note: You can insert this symbol from the computer
keyboard by typing @r.

In Degree, Gradian or Radian anglemode:

° (degree) ¹ key

Value1°⇒value

List1°⇒ list

Matrix1°⇒ matrix

This function gives you a way to specify a degree
angle while in Gradian or Radianmode.

In Degree, Gradian or Radian anglemode:

In Radian anglemode:

Symbols 171

172 Symbols

° (degree) ¹ key

In Radian anglemode, multiplies the argument by
π/180.

In Degree anglemode, returns the argument
unchanged.

In Gradian anglemode, multiplies the argument by
10/9.

Note: You can insert this symbol from the computer
keyboard by typing @d.

°, ', '' (degree/minute/second) /k keys

dd°mm'ss.ss''⇒ expression

ddA positive or negative number
mmA non-negative number
ss.ss A non-negative number

Returns dd+(mm/60)+(ss.ss/3600).

This base-60 entry format lets you:

• Enter an angle in degrees/minutes/seconds
without regard to the current anglemode.

• Enter time as hours/minutes/seconds.

Note: Follow ss.ss with two apostrophes (''), not a
quote symbol (").

In Degree anglemode:

∠ (angle) /k keys

[Radius,∠θ_Angle]⇒ vector
(polar input)

[Radius,∠θ_Angle,Z_Coordinate]⇒ vector
(cylindrical input)

[Radius,∠θ_Angle,∠θ_Angle]⇒ vector
(spherical input)

Returns coordinates as a vector depending on the
Vector Format mode setting: rectangular, cylindrical,
or spherical.

Note: You can insert this symbol from the computer
keyboard by typing @<.

In Radianmode and vector format set to:
rectangular

cylindrical

spherical

∠ (angle) /k keys

(Magnitude∠Angle)⇒ complexValue
(polar input)

Enters a complex value in (r∠θ) polar form. The
Angle is interpreted according to the current Angle
mode setting.

In Radian anglemode and Rectangular complex
format:

_ (underscore as an empty element)
See “Empty (Void) Elements,”

page 177.

10^() Catalog >

10^ (Value1)⇒ value

10^ (List1)⇒ list

Returns 10 raised to the power of the argument.

For a list, returns 10 raised to the power of the
elements in List1.

10^(squareMatrix1)⇒ squareMatrix

Returns 10 raised to the power of squareMatrix1.
This is not the same as calculating 10 raised to the
power of each element. For information about the
calculationmethod, refer to cos().

squareMatrix1must be diagonalizable. The result
always contains floating-point numbers.

^⁻¹ (reciprocal) Catalog >

Value1 ^⁻¹⇒ value

List1 ^⁻¹⇒ list

Returns the reciprocal of the argument.

For a list, returns the reciprocals of the elements in
List1.

Symbols 173

174 Symbols

^⁻¹ (reciprocal) Catalog >

squareMatrix1 ^⁻¹⇒ squareMatrix

Returns the inverse of squareMatrix1.

squareMatrix1must be a non-singular squarematrix.

| (constraint operator) /k keys

Expr | BooleanExpr1[and BooleanExpr2]...

Expr | BooleanExpr1[orBooleanExpr2]...

The constraint (“|”) symbol serves as a binary
operator. The operand to the left of | is an expression.
The operand to the right of | specifies one or more
relations that are intended to affect the simplification
of the expression. Multiple relations after |must be
joined by logical “and” or “or” operators.

The constraint operator provides three basic types of
functionality:

• Substitutions

• Interval constraints

• Exclusions

Substitutions are in the form of an equality, such as
x=3 or y=sin(x). To bemost effective, the left side
should be a simple variable. Expr |Variable = value
will substitute value for every occurrence of Variable
inExpr.

Interval constraints take the form of one or more
inequalities joined by logical “and” or “or” operators.
Interval constraints also permit simplification that
otherwisemight be invalid or not computable.

Exclusions use the “not equals” (/= or ≠) relational
operator to exclude a specific value from
consideration.

→ (store) /h key

Value→Var

List→Var

Matrix→Var

Expr→Function(Param1,...)

List→Function(Param1,...)

Matrix→Function(Param1,...)

If the variableVar does not exist, creates it and
initializes it toValue, List, orMatrix.

If the variableVar already exists and is not locked or
protected, replaces its contents withValue, List, or
Matrix.

Note: You can insert this operator from the keyboard
by typing =: as a shortcut. For example, type pi/4
=: myvar.

:= (assign) /t keys

Var := Value

Var := List

Var :=Matrix

Function(Param1,...) := Expr

Function(Param1,...) := List

Function(Param1,...) :=Matrix

If variableVar does not exist, creates Var and
initializes it toValue, List, orMatrix.

If Var already exists and is not locked or protected,
replaces its contents withValue, List, orMatrix.

Symbols 175

176 Symbols

© (comment) /k keys

© [text]

© processes text as a comment line, allowing you to
annotate functions and programs that you create.

© can be at the beginning or anywhere in the line.
Everything to the right of ©, to the end of the line, is
the comment.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line
definitions by pressing@ instead of· at the end

of each line. On the computer keyboard, hold down Alt
and press Enter.

0b, 0h 0B keys,0H keys

0b binaryNumber
0h hexadecimalNumber

Denotes a binary or hexadecimal number,
respectively. To enter a binary or hex number, you
must enter the 0b or 0h prefix regardless of the Base
mode. Without a prefix, a number is treated as
decimal (base 10).

Results are displayed according to the Basemode.

In Dec basemode:

In Bin basemode:

In Hex basemode:

Empty (Void) Elements

When analyzing real-world data, youmight not alwayshave a complete data set. TI-Nspire™
Software allowsempty, or void, data elements so you can proceed with the nearly complete
data rather than having to start over or discard the incomplete cases.

You can find an example of data involving empty elements in the Lists&Spreadsheet chapter,
under “Graphing spreadsheet data.”

The delVoid() function lets you remove empty elements from a list. The isVoid() function lets
you test for an empty element. For details, see delVoid(), page 41, and isVoid(), page 66.

Note:To enter an empty element manually in amath expression, type “_” or the keyword
void. The keyword void is automatically converted to a “_” symbolwhen the expression is
evaluated. To type “_” on the handheld, press/_.

Calculations involving void elements

Themajority of calculations involving a void input will
produce a void result. See special cases below.

List arguments containing void elements

The following functions and commands ignore (skip)
void elements found in list arguments.

count, countIf, cumulativeSum, freqTable►list,
frequency, max, mean, median, product, stDevPop,
stDevSamp, sum, sumIf, varPop, and varSamp, as
well as regression calculations, OneVar, TwoVar, and
FiveNumSummary statistics, confidence intervals,
and stat tests

SortA and SortD move all void elements within the
first argument to the bottom.

Empty (Void) Elements 177

178 Empty (Void) Elements

List arguments containing void elements

In regressions, a void in an X or Y list introduces a
void for the corresponding element of the residual.

An omitted category in regressions introduces a void
for the corresponding element of the residual.

A frequency of 0 in regressions introduces a void for
the corresponding element of the residual.

Shortcuts for Entering Math Expressions

Shortcuts let you enter elements of math expressionsby typing instead of using the Catalog
or SymbolPalette. For example, to enter the expression √6, you can type sqrt(6)on the
entry line.When you press·, the expression sqrt(6) is changed to √6. Some shortrcuts
are useful from both the handheld and the computer keyboard. Others are useful primarily
from the computer keyboard.

From the Handheld or Computer Keyboard

To enter this: Type this shortcut:

π pi

θ theta

∞ infinity

≤ <=

≥ >=

≠ /=

⇒ (logical implication) =>

⇔ (logical double implication, XNOR) <=>

→ (store operator) =:

| | (absolute value) abs(...)

√() sqrt(...)

Σ() (Sum template) sumSeq(...)

Π() (Product template) prodSeq(...)

sin⁻¹(), cos⁻¹(), ... arcsin(...), arccos(...), ...

ΔList() deltaList(...)

Shortcuts for EnteringMath Expressions 179

180 Shortcuts for EnteringMath Expressions

From the Computer Keyboard

To enter this: Type this shortcut:

i (imaginary constant) @i

e (natural log base e) @e

E (scientific notation) @E

T (transpose) @t

r (radians) @r

° (degrees) @d

g (gradians) @g

∠ (angle) @<

► (conversion) @>

►Decimal,►approxFraction(), and so
on.

@>Decimal, @>approxFraction(), and so
on.

EOS™ (Equation Operating System) Hierarchy

This section describes the Equation Operating System (EOS™) that is used by the TI-Nspire™
math and science learning technology. Numbers, variables, and functionsare entered in a
simple, straightforward sequence. EOS™software evaluatesexpressionsand equations
using parenthetical grouping and according to the priorities described below.

Order of Evaluation

Level Operator

1 Parentheses (), brackets [], braces { }

2 Indirection (#)

3 Function calls

4 Post operators: degrees-minutes-seconds (°,',"), factorial (!), percentage (%),
radian (r), subscript ([]), transpose (T)

5 Exponentiation, power operator (^)

6 Negation (⁻)

7 String concatenation (&)

8 Multiplication (•), division (/)

9 Addition (+), subtraction (-)

10 Equality relations: equal (=), not equal (≠ or /=),
less than (<), less than or equal (≤ or <=), greater than (>), greater than or equal
(≥ or >=)

11 Logical not

12 Logical and

13 Logical or

14 xor, nor, nand

15 Logical implication (⇒)

16 Logical double implication, XNOR (⇔)

17 Constraint operator (“|”)

18 Store (→)

EOS™ (Equation Operating System) Hierarchy 181

182 EOS™ (Equation Operating System) Hierarchy

Parentheses, Brackets, and Braces
All calculations inside a pair of parentheses, brackets, or bracesare evaluated first. For
example, in the expression 4(1+2), EOS™software first evaluates the portion of the
expression inside the parentheses, 1+2, and thenmultiplies the result, 3, by 4.

The number of opening and closing parentheses, brackets, and bracesmust be the same
within an expression or equation. If not, an error message is displayed that indicates the
missing element. For example, (1+2)/(3+4 will display the error message “Missing).”

Note: Because the TI-Nspire™ software allows you to define your own functions, a variable name followed
by an expression in parentheses is considered a “function call” instead of impliedmultiplication. For
example a(b+c) is the function a evaluated by b+c. Tomultiply the expression b+c by the variable a, use
explicit multiplication: a•(b+c).

Indirection
The indirection operator (#) converts a string to a variable or function name. For example, #
(“x”&”y”&”z”) creates the variable name xyz. Indirection also allows the creation and
modification of variables from inside a program. For example, if 10→r and “r”→s1, then
#s1=10.

Post Operators
Post operators are operators that come directly after an argument, such as5!, 25%, or 60°15'
45". Arguments followed bya post operator are evaluated at the fourth priority level. For
example, in the expression 4^3!, 3! is evaluated first. The result, 6, then becomes the
exponent of 4 to yield 4096.

Exponentiation
Exponentiation (^) and element-by-element exponentiation (.^) are evaluated from right to
left. For example, the expression 2^3^2 is evaluated the same as2^(3^2) to produce 512.
This is different from (2^3)^2, which is 64.

Negation
To enter a negative number, pressv followed by the number. Post operationsand

exponentiation are performed before negation. For example, the result of −x2 is a negative
number, and −92 =−81. Use parentheses to square a negative number such as (−9)2 to
produce 81.

Constraint (“|”)
The argument following the constraint (“|”) operator providesa set of constraints that affect
the evaluation of the argument preceding the operator.

Error Codes and Messages

When an error occurs, its code is assigned to variable errCode. User-defined programsand
functions can examine errCode to determine the cause of an error. For an example of using
errCode, See Example 2 under the Try command, page 141.

Note:Some error conditionsapply only to TI-Nspire™ CASproducts, and some apply only to
TI-Nspire™products.

Error
code

Description

10 A function did not return a value

20 A test did not resolve to TRUE or FALSE.

Generally, undefined variables cannot be compared. For example, the test If a<b will cause this error if either a or
b is undefined when the If statement is executed.

30 Argument cannot be a folder name.

40 Argument error

50 Argument mismatch

Two or more arguments must be of the same type.

60 Argument must be a Boolean expression or integer

70 Argument must be a decimal number

90 Argument must be a list

100 Argument must be amatrix

130 Argument must be a string

140 Argument must be a variable name.

Make sure that the name:

• does not begin with a digit

• does not contain spaces or special characters

• does not use underscore or period in invalid manner

• does not exceed the length limitations

See the Calculator section in the documentation for more details.

160 Argument must be an expression

165 Batteries too low for sending or receiving

Install new batteries before sending or receiving.

170 Bound

Error CodesandMessages 183

184 Error CodesandMessages

Error
code

Description

The lower boundmust be less than the upper bound to define the search interval.

180 Break

Thed orc key was pressed during a long calculation or during program execution.

190 Circular definition

This message is displayed to avoid running out of memory during infinite replacement of variable values during
simplification. For example, a+1->a, where a is an undefined variable, will cause this error.

200 Constraint expression invalid

For example, solve(3x^2-4=0,x) | x<0 or x>5 would produce this error message because the constraint is
separated by “or” instead of “and.”

210 Invalid Data type

An argument is of the wrong data type.

220 Dependent limit

230 Dimension

A list or matrix index is not valid. For example, if the list {1,2,3,4} is stored in L1, then L1[5] is a dimension error
because L1 only contains four elements.

235 Dimension Error. Not enough elements in the lists.

240 Dimensionmismatch

Two or more arguments must be of the same dimension. For example, [1,2]+[1,2,3] is a dimensionmismatch
because thematrices contain a different number of elements.

250 Divide by zero

260 Domain error

An argument must be in a specified domain. For example, rand(0) is not valid.

270 Duplicate variable name

280 Else and ElseIf invalid outside of If...EndIf block

290 EndTry is missing thematching Else statement

295 Excessive iteration

300 Expected 2 or 3-element list or matrix

310 The first argument of nSolvemust be an equation in a single variable. It cannot contain a non-valued variable other
than the variable of interest.

320 First argument of solve or cSolvemust be an equation or inequality

For example, solve(3x^2-4,x) is invalid because the first argument is not an equation.

Error
code

Description

345 Inconsistent units

350 Index out of range

360 Indirection string is not a valid variable name

380 Undefined Ans

Either the previous calculation did not create Ans, or no previous calculation was entered.

390 Invalid assignment

400 Invalid assignment value

410 Invalid command

430 Invalid for the current mode settings

435 Invalid guess

440 Invalid impliedmultiply

For example, x(x+1) is invalid; whereas, x*(x+1) is the correct syntax. This is to avoid confusion between implied
multiplication and function calls.

450 Invalid in a function or current expression

Only certain commands are valid in a user-defined function.

490 Invalid in Try..EndTry block

510 Invalid list or matrix

550 Invalid outside function or program

A number of commands are not valid outside a function or program. For example, Local cannot be used unless it
is in a function or program.

560 Invalid outside Loop..EndLoop, For..EndFor, or While..EndWhile blocks

For example, the Exit command is valid only inside these loop blocks.

565 Invalid outside program

570 Invalid pathname

For example, \var is invalid.

575 Invalid polar complex

580 Invalid program reference

Programs cannot be referenced within functions or expressions such as 1+p(x) where p is a program.

600 Invalid table

605 Invalid use of units

610 Invalid variable name in a Local statement

Error CodesandMessages 185

186 Error CodesandMessages

Error
code

Description

620 Invalid variable or function name

630 Invalid variable reference

640 Invalid vector syntax

650 Link transmission

A transmission between two units was not completed. Verify that the connecting cable is connected firmly to both
ends.

665 Matrix not diagonalizable

670 Low Memory

1. Delete some data in this document

2. Save and close this document

If 1 and 2 fail, pull out and re-insert batteries

672 Resource exhaustion

673 Resource exhaustion

680 Missing (

690 Missing)

700 Missing “

710 Missing]

720 Missing }

730 Missing start or end of block syntax

740 Missing Then in the If..EndIf block

750 Name is not a function or program

765 No functions selected

780 No solution found

800 Non-real result

For example, if the software is in the Real setting, √(-1) is invalid.

To allow complex results, change the “Real or Complex” Mode Setting to RECTANGULAR or POLAR.

830 Overflow

850 Program not found

A program reference inside another program could not be found in the provided path during execution.

855 Rand type functions not allowed in graphing

Error
code

Description

860 Recursion too deep

870 Reserved name or system variable

900 Argument error

Median-medianmodel could not be applied to data set.

910 Syntax error

920 Text not found

930 Too few arguments

The function or command is missing one or more arguments.

940 Toomany arguments

The expression or equation contains an excessive number of arguments and cannot be evaluated.

950 Toomany subscripts

955 Toomany undefined variables

960 Variable is not defined

No value is assigned to variable. Use one of the following commands:

• sto→

• :=

• Define

to assign values to variables.

965 UnlicensedOS

970 Variable in use so references or changes are not allowed

980 Variable is protected

990 Invalid variable name

Make sure that the name does not exceed the length limitations

1000 Window variables domain

1010 Zoom

1020 Internal error

1030 Protectedmemory violation

1040 Unsupported function. This function requires Computer Algebra System. Try TI-Nspire™CAS.

1045 Unsupported operator. This operator requires Computer Algebra System. Try TI-Nspire™CAS.

1050 Unsupported feature. This operator requires Computer Algebra System. Try TI-Nspire™CAS.

Error CodesandMessages 187

188 Error CodesandMessages

Error
code

Description

1060 Input argument must be numeric. Only inputs containing numeric values are allowed.

1070 Trig function argument too big for accurate reduction

1080 Unsupported use of Ans.This application does not support Ans.

1090 Function is not defined. Use one of the following commands:

• Define

• :=

• sto→
to define a function.

1100 Non-real calculation

For example, if the software is in the Real setting, √(-1) is invalid.

To allow complex results, change the “Real or Complex” Mode Setting to RECTANGULAR or POLAR.

1110 Invalid bounds

1120 No sign change

1130 Argument cannot be a list or matrix

1140 Argument error

The first argument must be a polynomial expression in the second argument. If the second argument is omitted,
the software attempts to select a default.

1150 Argument error

The first two arguments must be polynomial expressions in the third argument. If the third argument is omitted,
the software attempts to select a default.

1160 Invalid library pathname

A pathnamemust be in the form xxx\yyy, where:

• The xxx part can have 1 to 16 characters.
• The yyy part can have 1 to 15 characters.
See the Library section in the documentation for more details.

1170 Invalid use of library pathname

• A value cannot be assigned to a pathname usingDefine, :=, or sto→.

• A pathname cannot be declared as a Local variable or be used as a parameter in a
function or program definition.

1180 Invalid library variable name.

Make sure that the name:

• Does not contain a period

• Does not begin with an underscore

Error
code

Description

• Does not exceed 15 characters

See the Library section in the documentation for more details.

1190 Library document not found:

• Verify library is in theMyLib folder.

• Refresh Libraries.

See the Library section in the documentation for more details.

1200 Library variable not found:

• Verify library variable exists in the first problem in the library.

• Make sure library variable has been defined as LibPub or LibPriv.

• Refresh Libraries.

See the Library section in the documentation for more details.

1210 Invalid library shortcut name.

Make sure that the name:

• Does not contain a period

• Does not begin with an underscore

• Does not exceed 16 characters

• Is not a reserved name

See the Library section in the documentation for more details.

1220 Domain error:

The tangentLine and normalLine functions support real-valued functions only.

1230 Domain error.

Trigonometric conversion operators are not supported in Degree or Gradian anglemodes.

1250 Argument Error

Use a system of linear equations.

Example of a system of two linear equations with variables x and y:

 3x+7y=5

 2y-5x=-1

1260 Argument Error:

The first argument of nfMin or nfMax must be an expression in a single variable. It cannot contain a non-valued
variable other than the variable of interest.

1270 Argument Error

Order of the derivativemust be equal to 1 or 2.

1280 Argument Error

Error CodesandMessages 189

190 Error CodesandMessages

Error
code

Description

Use a polynomial in expanded form in one variable.

1290 Argument Error

Use a polynomial in one variable.

1300 Argument Error

The coefficients of the polynomial must evaluate to numeric values.

1310 Argument error:

A function could not be evaluated for one or more of its arguments.

1380 Argument error:

Nested calls to domain() function are not allowed.

Warning Codes and Messages

You can use thewarnCodes() function to store the codesof warningsgenerated by
evaluating an expression. This table lists each numericwarning code and its associated
message. For an example of storing warning codes, seewarnCodes(), page 148.

Warning
code Message

10000 Operationmight introduce false solutions.

10001 Differentiating an equationmay produce a false equation.

10002 Questionable solution

10003 Questionable accuracy

10004 Operationmight lose solutions.

10005 cSolvemight specify more zeros.

10006 Solvemay specify more zeros.

10007 More solutions may exist. Try specifying appropriate lower and upper bounds and/or a guess.

Examples using solve():

• solve(Equation, Var=Guess)|lowBound<Var<upBound

• solve(Equation, Var)|lowBound<Var<upBound

• solve(Equation, Var=Guess)

10008 Domain of the result might be smaller than the domain of the input.

10009 Domain of the result might be larger than the domain of the input.

10012 Non-real calculation

10013 ∞^0 or undef^0 replaced by 1

10014 undef^0 replaced by 1

10015 1^∞ or 1^undef replaced by 1

10016 1^undef replaced by 1

10017 Overflow replaced by ∞ or −∞

10018 Operation requires and returns 64 bit value.

10019 Resource exhaustion, simplificationmight be incomplete.

10020 Trig function argument too big for accurate reduction.

10021 Input contains an undefined parameter.

Warning CodesandMessages 191

192 Warning CodesandMessages

Warning
code Message

Result might not be valid for all possible parameter values.

10022 Specifying appropriate lower and upper bounds might produce a solution.

10023 Scalar has beenmultiplied by the identity matrix.

10024 Result obtained using approximate arithmetic.

10025 Equivalence cannot be verified in EXACT mode.

10026 Constraint might be ignored. Specify constraint in the form "\" 'Variable MathTestSymbol Constant' or a
conjunct of these forms, for example 'x<3 and x>-12'

Support and Service

Texas Instruments Support and Service

General Information: North and South America

Home Page: education.ti.com

KnowledgeBase and e-mail inquiries: education.ti.com/support

Phone: (800) TI-CARES / (800) 842-2737
For North and South America and U.S.
Territories

International contact information: http://education.ti.com/en/us/customer-
support/support_worldwide

For Technical Support

Knowledge Base and support by e-mail: education.ti.com/support or ti-cares@ti.com

Phone (not toll-free): (972) 917-8324

For Product (Hardware) Service
Customers in the U.S., Canada, Mexico, and U.S. territories:Always contact Texas
InstrumentsCustomer Support before returning a product for service.

For All Other Countries:
For general information

For more information about TI products and services, contact TI bye-mail or visit the
TI Internet address.

E-mail inquiries: ti-cares@ti.com

Home Page: education.ti.com

Service and Warranty Information

For information about the length and termsof the warranty or about product service, refer to
the warranty statement enclosed with this product or contact your localTexas Instruments
retailer/distributor.

Support and Service 193

http://education.ti.com/
http://education.ti.com/support
http://education.ti.com/en/us/customer-support/support_worldwide
http://education.ti.com/en/us/customer-support/support_worldwide
http://education.ti.com/en/us/customer-support/support_worldwide
http://education.ti.com/support
mailto:ti-cares@ti.com
mailto:ti-cares@ti.com
mailto:ti-cares@ti.com
mailto:ti-cares@ti.com
http://education.ti.com/

194

Index

-

-, subtract 156

!

!, factorial 165

"

", second notation 172

#

#, indirection 170

#, indirection operator 182

%

%, percent 161

&

&, append 165

*

*, multiply 157

.

.-, dot subtraction 160

.*, dot multiplication 160

./, dot division 160

.^, dot power 161

Index 195

196 Index

.+, dot addition 160

/

/, divide 158

:

:=, assign 175

^

^⁻¹, reciprocal 173

^, power 158

|

|, constraint operator 174

′

′ minute notation 172

=

≠, not equal 162

≤, less than or equal 163

≥, greater than or equal 164

>, greater than 163

=, equal 161

∏

∏, product 167

∑

∑(), sum 168

∑Int() 168

∑Prn() 169

√

√, square root 167

∠

∠ (angle) 172

∫

∫, integral 166

►

►approxFraction() 16

►Base10, display as decimal integer 21

►Base16, display as hexadecimal 21

►Base2, display as binary 20

►Cylind, display as cylindrical vector 37

►DD, display as decimal angle 37

►Decimal, display result as decimal 38

►DMS, display as degree/minute/second 42

►Grad, convert to gradian angle 60

►Polar, display as polar vector 99

►Rad, convert to radian angle 107

►Rect, display as rectangular vector 110

►Sphere, display as spherical vector 130

⇒

⇒, logical implication 164, 179

→

→, store variable 175

Index 197

198 Index

⇔

⇔, logical double implication 165, 179

©

©, comment 176

°

°, degree notation 171

°, degrees/minutes/seconds 172

0

0b, binary indicator 176

0h, hexadecimal indicator 176

1

10^(), power of ten 173

2

2-sample F Test 54

A

abs(), absolute value 11

absolute value

template for 7-8

add, + 156

amortization table, amortTbl() 11, 19

amortTbl(), amortization table 11, 19

and, Boolean operator 12

angle(), angle 12

angle, angle() 12

ANOVA, one-way variance analysis 13

ANOVA2way, two-way variance analysis 14

Ans, last answer 16

answer (last), Ans 16

append, & 165

approx(), approximate 16

approximate, approx() 16

approxRational() 17

arccos(), cos⁻¹() 17

arccosh(), cosh⁻¹() 17

arccot(), cot⁻¹() 17

arccoth(), coth⁻¹() 17

arccsc(), csc⁻¹() 17

arccsch(), csch⁻¹() 17

arcsec(), sec⁻¹() 17

arcsech(), csech⁻¹() 17

arcsin(), sin⁻¹() 18

arcsinh(), sinh⁻¹() 18

arctan(), tan⁻¹() 18

arctanh(), tanh⁻¹() 18

arguments in TVM functions 144

augment(), augment/concatenate 18

augment/concatenate, augment() 18

average rate of change, avgRC() 18

avgRC(), average rate of change 18

B

binary

display, ►Base2 20

indicator, 0b 176

binomCdf() 22

binomPdf() 22

Boolean operators

⇒ 164, 179

⇔ 165

and 12

Index 199

200 Index

nand 88

nor 92

not 93

or 96

xor 149

C

Cdf() 50

ceiling(), ceiling 22

ceiling, ceiling() 22, 33

centralDiff() 22

char(), character string 23

character string, char() 23

characters

numeric code, ord() 97

string, char() 23

clear

error, ClrErr 25

ClearAZ 25

ClrErr, clear error 25

colAugment 26

colDim(), matrix column dimension 26

colNorm(), matrix column norm 26

combinations, nCr() 89

comment, © 176

complex

conjugate, conj() 26

conj(), complex conjugate 26

constraint operator "|" 174

constraint operator, order of evaluation 181

construct matrix, constructMat() 26

constructMat(), construct matrix 26

convert

►Grad 60

►Rad 107

copy variable or function, CopyVar 27

correlationmatrix, corrMat() 27

corrMat(), correlationmatrix 27

cos⁻¹, arccosine 29

cos(), cosine 28

cosh⁻¹(), hyperbolic arccosine 30

cosh(), hyperbolic cosine 29

cosine, cos() 28

cot⁻¹(), arccotangent 31

cot(), cotangent 30

cotangent, cot() 30

coth⁻¹(), hyperbolic arccotangent 32

coth(), hyperbolic cotangent 31

count days between dates, dbd() 37

count items in a list conditionally , countif() 32

count items in a list, count() 32

count(), count items in a list 32

countif(), conditionally count items in a list 32

cPolyRoots() 33

cross product, crossP() 33

crossP(), cross product 33

csc⁻¹(), inverse cosecant 34

csc(), cosecant 34

csch⁻¹(), inverse hyperbolic cosecant 35

csch(), hyperbolic cosecant 35

cubic regression, CubicReg 35

CubicReg, cubic regression 35

cumulative sum, cumulativeSum() 36

cumulativeSum(), cumulative sum 36

cycle, Cycle 36

Cycle, cycle 36

cylindrical vector display, ►Cylind 37

D

d(), first derivative 166

Index 201

202 Index

days between dates, dbd() 37

dbd(), days between dates 37

decimal

angle display, ►DD 37

integer display, ►Base10 21

Define 38

Define LibPriv 39

Define LibPub 40

define, Define 38

Define, define 38

defining

private function or program 39

public function or program 40

definite integral

template for 10

degree notation, ° 171

degree/minute/second display, ►DMS 42

degree/minute/second notation 172

delete

void elements from list 41

deleting

variable, DelVar 40

deltaList() 40

DelVar, delete variable 40

delVoid(), remove void elements 41

derivatives

first derivative, d() 166

numeric derivative, nDeriv() 90-91

numeric derivative, nDerivative() 89

det(), matrix determinant 41

diag(), matrix diagonal 41

dim(), dimension 42

dimension, dim() 42

Disp, display data 42

display as

binary, ►Base2 20

cylindrical vector, ►Cylind 37

decimal angle, ►DD 37

decimal integer, ►Base10 21

degree/minute/second, ►DMS 42

hexadecimal, ►Base16 21

polar vector, ►Polar 99

rectangular vector, ►Rect 110

spherical vector, ►Sphere 130

display data, Disp 42

distribution functions

binomCdf() 22

binomPdf() 22

invNorm() 65

invt() 65

Invχ²() 65

normCdf() 92

normPdf() 93

poissCdf() 99

poissPdf() 99

tCdf() 138

tPdf() 140

χ²2way() 23

χ²Cdf() 24

χ²GOF() 24

χ²Pdf() 25

divide, / 158

dot

addition, .+ 160

division, ./ 160

multiplication, .* 160

power, .^ 161

product, dotP() 43

subtraction, .- 160

dotP(), dot product 43

Index 203

204 Index

E

e exponent

template for 6

e to a power, e^() 43, 48

E, exponent 170

e^(), e to a power 43

eff(), convert nominal to effective rate 44

effective rate, eff() 44

eigenvalue, eigVl() 45

eigenvector, eigVc() 44

eigVc(), eigenvector 44

eigVl(), eigenvalue 45

else if, ElseIf 45

else, Else 61

ElseIf, else if 45

empty (void) elements 177

end

for, EndFor 52

function, EndFunc 55

if, EndIf 61

loop, EndLoop 79

program, EndPrgm 102

try, EndTry 141

while, EndWhile 149

end function, EndFunc 55

end if, EndIf 61

end loop, EndLoop 79

end while, EndWhile 149

EndTry, end try 141

EndWhile, end while 149

EOS (Equation Operating System) 181

equal, = 161

Equation Operating System (EOS) 181

error codes andmessages 183, 191

errors and troubleshooting

clear error, ClrErr 25

pass error, PassErr 98

euler(), Euler function 46

evaluate polynomial, polyEval() 100

evaluation, order of 181

exclusion with "|" operator 174

exit, Exit 47

Exit, exit 47

exp(), e to a power 48

exponent, E 170

exponential regession, ExpReg 48

exponents

template for 5

expr(), string to expression 48

ExpReg, exponential regession 48

expressions

string to expression, expr() 48

F

factor(), factor 49

factor, factor() 49

factorial, ! 165

Fill, matrix fill 50

financial functions, tvmFV() 143

financial functions, tvmI() 144

financial functions, tvmN() 144

financial functions, tvmPmt() 144

financial functions, tvmPV() 144

first derivative

template for 9

FiveNumSummary 51

floor(), floor 51

floor, floor() 51

For 52

Index 205

206 Index

for, For 52

For, for 52

format string, format() 52

format(), format string 52

fpart(), function part 53

fractions

propFrac 103

template for 5

freqTable() 53

frequency() 54

Frobenius norm, norm() 92

Func, function 55

Func, program function 55

functions

part, fpart() 53

program function, Func 55

user-defined 38

functions and variables

copying 27

G

g, gradians 170

gcd(), greatest common divisor 56

geomCdf() 56

geomPdf() 56

get/return

denominator, getDenom() 57

number, getNum() 59

variables injformation, getVarInfo() 57, 59

getDenom(), get/return denominator 57

getLangInfo(), get/return language information 57

getLockInfo(), tests lock status of variable or variable group 57

getMode(), get mode settings 58

getNum(), get/return number 59

getType(), get type of variable 59

getVarInfo(), get/return variables information 59

go to, Goto 60

Goto, go to 60

gradian notation, g 170

greater than or equal, ≥ 164

greater than, > 163

greatest common divisor, gcd() 56

groups, locking and unlocking 76, 147

groups, testing lock status 57

H

hexadecimal

display, ►Base16 21

indicator, 0h 176

hyperbolic

arccosine, cosh⁻¹() 30

arcsine, sinh⁻¹() 127

arctangent, tanh⁻¹() 138

cosine, cosh() 29

sine, sinh() 127

tangent, tanh() 137

I

identity matrix, identity() 61

identity(), identity matrix 61

if, If 61

If, if 61

ifFn() 62

imag(), imaginary part 63

imaginary part, imag() 63

indirection operator (#) 182

indirection, # 170

inString(), within string 63

int(), integer 63

Index 207

208 Index

intDiv(), integer divide 64

integer divide, intDiv() 64

integer part, iPart() 65

integer, int() 63

integral, ∫ 166

interpolate(), interpolate 64

inverse cumulative normal distribution (invNorm() 65

inverse, ^⁻¹ 173

invF() 65

invNorm(), inverse cumulative normal distribution) 65

invt() 65

Invχ²() 65

iPart(), integer part 65

irr(), internal rate of return

internal rate of return, irr() 66

isPrime(), prime test 66

isVoid(), test for void 66

L

label, Lbl 67

language

get language information 57

Lbl, label 67

lcm, least commonmultiple 67

least commonmultiple, lcm 67

left(), left 67

left, left() 67

length of string 42

less than or equal, ≤ 163

LibPriv 39

LibPub 40

library

create shortcuts to objects 68

libShortcut(), create shortcuts to library objects 68

linear regression, LinRegAx 69

linear regression, LinRegBx 68, 70

LinRegBx, linear regression 68

LinRegMx, linear regression 69

LinRegtIntervals, linear regression 70

LinRegtTest 71

linSolve() 73

list to matrix, list►mat() 74

list, conditionally count items in 32

list, count items in 32

list►mat(), list to matrix 74

lists

augment/concatenate, augment() 18

cross product, crossP() 33

cumulative sum, cumulativeSum() 36

differences in a list, Δlist() 73

dot product, dotP() 43

empty elements in 177

list to matrix, list►mat() 74

matrix to list, mat►list() 80

maximum, max() 80

mid-string, mid() 83

minimum, min() 84

new, newList() 90

product, product() 103

sort ascending, SortA 129

sort descending, SortD 129

summation, sum() 134-135

ln(), natural logarithm 74

LnReg, logarithmic regression 75

local variable, Local 76

local, Local 76

Local, local variable 76

Lock, lock variable or variable group 76

locking variables and variable groups 76

Log

template for 6

Index 209

210 Index

logarithmic regression, LnReg 75

logarithms 74

logical double implication,⇔ 165

logical implication,⇒ 164, 179

logistic regression, Logistic 77

logistic regression, LogisticD 78

Logistic, logistic regression 77

LogisticD, logistic regression 78

loop, Loop 79

Loop, loop 79

LU, matrix lower-upper decomposition 80

M

mat►list(), matrix to list 80

matrices

augment/concatenate, augment() 18

column dimension, colDim() 26

column norm, colNorm() 26

cumulative sum, cumulativeSum() 36

determinant, det() 41

diagonal, diag() 41

dimension, dim() 42

dot addition, .+ 160

dot division, ./ 160

dot multiplication, .* 160

dot power, .^ 161

dot subtraction, .- 160

eigenvalue, eigVl() 45

eigenvector, eigVc() 44

filling, Fill 50

identity, identity() 61

list to matrix, list►mat() 74

lower-upper decomposition, LU 80

matrix to list, mat►list() 80

maximum, max() 80

minimum, min() 84

new, newMat() 90

product, product() 103

QR factorization, QR 104

random, randMat() 108

reduced row echelon form, rref() 118

row addition, rowAdd() 117

row dimension, rowDim() 117

row echelon form, ref() 110

row multiplication and addition, mRowAdd() 85

row norm, rowNorm() 118

row operation, mRow() 85

row swap, rowSwap() 118

submatrix, subMat() 134-135

summation, sum() 134-135

transpose, T 136

matrix (1 × 2)

template for 8

matrix (2 × 1)

template for 8

matrix (2 × 2)

template for 8

matrix (m ×n)

template for 8

matrix to list, mat►list() 80

max(), maximum 80

maximum, max() 80

mean(), mean 81

mean, mean() 81

median(), median 82

median, median() 82

medium-medium line regression, MedMed 82

MedMed, medium-medium line regression 82

mid-string, mid() 83

mid(), mid-string 83

min(), minimum 84

Index 211

212 Index

minimum, min() 84

minute notation, ′ 172

mirr(), modified internal rate of return 84

mixed fractions, using propFrac(› with 103

mod(), modulo 85

mode settings, getMode() 58

modes

setting, setMode() 122

modified internal rate of return, mirr() 84

modulo, mod() 85

mRow(), matrix row operation 85

mRowAdd(), matrix row multiplication and addition 85

Multiple linear regression t test 87

multiply, * 157

MultReg 85

MultRegIntervals() 86

MultRegTests() 87

N

nand, Boolean operator 88

natural logarithm, ln() 74

nCr(), combinations 89

nDerivative(), numeric derivative 89

negation, entering negative numbers 182

net present value, npv() 94

new

list, newList() 90

matrix, newMat() 90

newList(), new list 90

newMat(), new matrix 90

nfMax(), numeric functionmaximum 90

nfMin(), numeric functionminimum 91

nInt(), numeric integral 91

nom), convert effective to nominal rate 91

nominal rate, nom() 91

nor, Boolean operator 92

norm(), Frobenius norm 92

normal distribution probability, normCdf() 92

normCdf() 92

normPdf() 93

not equal, ≠ 162

not, Boolean operator 93

nPr(), permutations 93

npv(), net present value 94

nSolve(), numeric solution 95

nth root

template for 6

numeric

derivative, nDeriv() 90-91

derivative, nDerivative() 89

integral, nInt() 91

solution, nSolve() 95

O

objects

create shortcuts to library 68

one-variable statistics, OneVar 95

OneVar, one-variable statistics 95

operators

order of evaluation 181

or (Boolean), or 96

or, Boolean operator 96

ord(), numeric character code 97

+, add 156

P

P►Rx(), rectangular x coordinate 98

P►Ry(), rectangular y coordinate 98

pass error, PassErr 98

Index 213

214 Index

PassErr, pass error 98

Pdf() 53

percent, % 161

permutations, nPr() 93

piecewise function (2-piece)

template for 6

piecewise function (N-piece)

template for 6

piecewise() 99

poissCdf() 99

poissPdf() 99

polar

coordinate, R►Pr() 107

coordinate, R►Pθ() 106

vector display, ►Polar 99

polyEval(), evaluate polynomial 100

polynomials

evaluate, polyEval() 100

random, randPoly() 109

PolyRoots() 101

power of ten, 10^() 173

power regression, PowerReg 101, 112-113, 138

power, ^ 158

PowerReg, power regression 101

Prgm, define program 102

prime number test, isPrime() 66

probability densiy, normPdf() 93

prodSeq() 102

product(), product 103

product, ∏() 167

template for 9

product, product() 103

programming

define program, Prgm 102

display data, Disp 42

pass error, PassErr 98

programs

defining private library 39

defining public library 40

programs and programming

clear error, ClrErr 25

display I/O screen, Disp 42

end program, EndPrgm 102

end try, EndTry 141

try, Try 141

proper fraction, propFrac 103

propFrac, proper fraction 103

Q

QR factorization, QR 104

QR, QR factorization 104

quadratic regression, QuadReg 104

QuadReg, quadratic regression 104

quartic regression, QuartReg 105

QuartReg, quartic regression 105

R

R, radian 171

R►Pr(), polar coordinate 107

R►Pθ(), polar coordinate 106

radian, R 171

rand(), random number 107

randBin, random number 107

randInt(), random integer 108

randMat(), random matrix 108

randNorm(), random norm 108

random

matrix, randMat() 108

norm, randNorm() 108

number seed, RandSeed 109

Index 215

216 Index

polynomial, randPoly() 109

random sample 109

randPoly(), random polynomial 109

randSamp() 109

RandSeed, random number seed 109

real(), real 109

real, real() 109

reciprocal, ^⁻¹ 173

rectangular-vector display, ►Rect 110

rectangular x coordinate, P►Rx() 98

rectangular y coordinate, P►Ry() 98

reduced row echelon form, rref() 118

ref(), row echelon form 110

regressions

cubic, CubicReg 35

exponential, ExpReg 48

linear regression, LinRegAx 69

linear regression, LinRegBx 68, 70

logarithmic, LnReg 75

Logistic 77

logistic, Logistic 78

medium-medium line, MedMed 82

MultReg 85

power regression, PowerReg 101, 112-113, 138

quadratic, QuadReg 104

quartic, QuartReg 105

sinusoidal, SinReg 128

remain(), remainder 111

remainder, remain() 111

remove

void elements from list 41

Request 112

RequestStr 113

result values, statistics 132

results, statistics 131

return, Return 114

Return, return 114

right(), right 114

right, right() 46, 64, 114, 148

rk23(), Runge Kutta function 114

rotate(), rotate 116

rotate, rotate() 116

round(), round 117

round, round() 117

row echelon form, ref() 110

rowAdd(), matrix row addition 117

rowDim(), matrix row dimension 117

rowNorm(), matrix row norm 118

rowSwap(), matrix row swap 118

rref(), reduced row echelon form 118

S

sec⁻¹(), inverse secant 119

sec(), secant 119

sech⁻¹(), inverse hyperbolic secant 120

sech(), hyperbolic secant 119

second derivative

template for 9

second notation, " 172

seq(), sequence 120

seqGen() 120

seqn() 121

sequence, seq() 120-121

set

mode, setMode() 122

setMode(), set mode 122

settings, get current 58

shift(), shift 123

shift, shift() 123

sign(), sign 124

sign, sign() 124

Index 217

218 Index

simult(), simultaneous equations 125

simultaneous equations, simult() 125

sin⁻¹(), arcsine 126

sin(), sine 125

sine, sin() 125

sinh⁻¹(), hyperbolic arcsine 127

sinh(), hyperbolic sine 127

SinReg, sinusoidal regression 128

sinusoidal regression, SinReg 128

SortA, sort ascending 129

SortD, sort descending 129

sorting

ascending, SortA 129

descending, SortD 129

spherical vector display, ►Sphere 130

sqrt(), square root 130

square root

template for 5

square root, √() 130, 167

standard deviation, stdDev() 132-133, 147

stat.results 131

stat.values 132

statistics

combinations, nCr() 89

factorial, ! 165

mean, mean() 81

median, median() 82

one-variable statistics, OneVar 95

permutations, nPr() 93

random norm, randNorm() 108

random number seed, RandSeed 109

standard deviation, stdDev() 132-133, 147

two-variable results, TwoVar 145

variance, variance() 147

stdDevPop(), population standard deviation 132

stdDevSamp(), sample standard deviation 133

Stop command 133

store variable (→) 175

storing

symbol, & 175

string

dimension, dim() 42

length 42

string(), expression to string 134

strings

append, & 165

character code, ord() 97

character string, char() 23

expression to string, string() 134

format, format() 52

formatting 52

indirection, # 170

left, left() 67

mid-string, mid() 83

right, right() 46, 64, 114, 148

rotate, rotate() 116

shift, shift() 123

string to expression, expr() 48

using to create variable names 182

within, InString 63

student-t distribution probability, tCdf() 138

student-t probability density, tPdf() 140

subMat(), submatrix 134-135

submatrix, subMat() 134-135

substitution with "|" operator 174

subtract, - 156

sum of interest payments 168

sum of principal payments 169

sum(), summation 134

sum, ∑() 168

template for 9

sumIf() 135

Index 219

220 Index

summation, sum() 134

sumSeq() 135

system of equations (2-equation)

template for 7

system of equations (N-equation)

template for 7

T

t test, tTest 142

T, transpose 136

tan⁻¹(), arctangent 137

tan(), tangent 136

tangent, tan() 136

tanh⁻¹(), hyperbolic arctangent 138

tanh(), hyperbolic tangent 137

tCdf(), studentt distribution probability 138

templates

absolute value 7-8

definite integral 10

e exponent 6

exponent 5

first derivative 9

fraction 5

Log 6

matrix (1 × 2) 8

matrix (2 × 1) 8

matrix (2 × 2) 8

matrix (m ×n) 8

nth root 6

piecewise function (2-piece) 6

piecewise function (N-piece) 6

product, ∏() 9

second derivative 9

square root 5

sum, ∑() 9

system of equations (2-equation) 7

system of equations (N-equation) 7

test for void, isVoid() 66

Test_2S, 2-sample F test 54

Text command 138

time value of money, Future Value 143

time value of money, Interest 144

time value of money, number of payments 144

time value of money, payment amount 144

time value of money, present value 144

tInterval, t confidence interval 139

tInterval_2Samp, twosample t confidence interval 140

tPdf(), student probability density 140

trace() 141

transpose, T 136

Try, error handling command 141

tTest, t test 142

tTest_2Samp, two-sample t test 143

TVM arguments 144

tvmFV() 143

tvmI() 144

tvmN() 144

tvmPmt() 144

tvmPV() 144

two-variable results, TwoVar 145

TwoVar, two-variable results 145

U

unit vector, unitV() 146

unitV(), unit vector 146

unLock, unlock variable or variable group 147

unlocking variables and variable groups 147

user-defined functions 38

user-defined functions and programs 39-40

Index 221

222 Index

V

variable

creating name from a character string 182

variable and functions

copying 27

variables

clear all single-letter 25

delete, DelVar 40

local, Local 76

variables, locking and unlocking 57, 76, 147

variance, variance() 147

varPop() 147

varSamp(), sample variance 147

vectors

cross product, crossP() 33

cylindrical vector display, ►Cylind 37

dot product, dotP() 43

unit, unitV() 146

void elements 177

void elements, remove 41

void, test for 66

W

warnCodes(), Warning codes 148

warning codes andmessages 191

when(), when 148

when, when() 148

while, While 149

While, while 149

with, | 174

within string, inString() 63

X

x², square 159

XNOR 165

xor, Boolean exclusive or 149

Z

zInterval, z confidence interval 150

zInterval_1Prop, one-proportion z confidence interval 151

zInterval_2Prop, two-proportion z confidence interval 151

zInterval_2Samp, two-sample z confidence interval 152

zTest 152

zTest_1Prop, one-proportion z test 153

zTest_2Prop, two-proportion z test 153

zTest_2Samp, two-sample z test 154

Δ

Δlist(), list difference 73

Χ

χ²2way 23

χ²Cdf() 24

χ²GOF 24

χ²Pdf() 25

Index 223

224

	Important Information
	Expression Templates
	Alphabetical Listing
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Symbols
	Empty (Void) Elements
	Shortcuts for Entering Math Expressions
	EOS™ (Equation Operating System) Hierarchy
	Error Codes and Messages
	Warning Codes and Messages
	Support and Service
	Texas Instruments Support and Service
	Service and Warranty Information

	Index

